Oxidation of Oxide Dispersion Strengthened Steels: II. Kinetics and Mechanism

Article Preview

Abstract:

The oxidation resistance of 18%Cr-oxide dispersion strengthened (ODS) ferritic steels with and without 5%Al has been investigated in air at 700900 °C for time period up to 540 h. The oxidation rate of ODS steels is significantly dependent on the oxidation time and temperature. Compared to Al-containing ODS steel, the finer grains of Al-free ODS steel are due to the formation of smaller coherent oxide particles which suppress the steel's grain growth. The grain refinement of ODS steels is expected to allow rapid segregation of Cr or Al to the steel surface, so that the continuous Fe-Cr spinel or alumina layer is formed quickly in comparison to the alloys without oxide particles dispersion. Therefore, the excellent oxidation resistance of ODS steels is owing to the formation of continuous, protective oxide layers which correlate with oxide nanoparticles and grain refinement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-111

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Lee, A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and F. Abe: Proceedings of ICAPP' 2009 (2009), Paper No. 9223.

DOI: 10.1016/j.jnucmat.2010.12.300

Google Scholar

[2] J.H. Lee, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and T. Abe: J. Nucl. Mater. Vol. 417(1–3) (2011), p.1225.

DOI: 10.1016/j.jnucmat.2010.12.279

Google Scholar

[3] A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and F. Abe: J. Nucl. Mater. Vol. 417(1–3) (2011), p.176.

DOI: 10.1016/j.jnucmat.2010.12.300

Google Scholar

[4] J.H. Lee: Adv. Mater. Res. Vol. 567 (2012), p.49.

Google Scholar

[5] J.H. Lee, R. Kasada, H.S. Cho and A. Kimura: J. ASTM Int. Vol. 6(8) (2009), JAI101952.

Google Scholar

[6] J.H. Lee: Appl. Mech. Mater. Vol. 87 (2011), p.243.

Google Scholar

[7] J.H. Lee and J.H. Kim: J. Nanosci. Nanotech. (2013), in press.

Google Scholar

[8] J.H. Lee: J. Nanosci. Nanotech. Vol. 12(2) (2012), p.1670.

Google Scholar

[9] J.H. Lee: Front. Energy Vol. 6(1) (2012), p.29.

Google Scholar

[10] J.H. Lee: Adv. Mater. Res. (2013), in press.

Google Scholar

[11] K.P. Lillerud and P. Kofstad: Oxid. Met. Vol. 17 (1982), p.127.

Google Scholar

[12] M. Le Gall, A.M. Huntz, B. Lesage, C. Monty and J. Bernardini: J. Mater. Sci. Vol. 30 (1995), p.201.

Google Scholar

[13] W.J. Quadakkers, A. Elschner, W. Speier and H. Nickel: Appl. Surf. Sci. Vol. 52 (1991), p.271.

Google Scholar

[14] ASM Handbook Corrosion: Fundamentals, Testing, and Protection, ASM International Materials Park, OH, Vol. 13A (2003), p.97.

Google Scholar

[15] C. Wagner: Zeitschrift Fur Physikalische Chemie, Vol. B21 (1933) p.25.

Google Scholar

[16] R.H. Doremus: J. Appl. Phys. Vol. 95 (2004), p.3217.

Google Scholar

[17] S.N. Basu and G.J. Yurek: Oxid. Met. Vol. 36, (1991), p.281.

Google Scholar

[18] Y. Chen, K. Sridharan, S. Ukai and T.R. Allen: J. Nucl. Mater. Vol. 371 (2007), p.118.

Google Scholar