A Multi-Scale Non-Deterministic Approach to Composite Curing Process Simulation

Article Preview

Abstract:

Thermosetting matrix composite materials are often subject to a curing process to enhance the mechanical properties of the final product. In recent years computational models of the curing process allowed for a remarkable time and cost compression with respect to trial and error procedures. Most of the proposed models, however, rely on deterministic hypothesis. In this paper a multi-scale non deterministic approach to cure process simulation has been proposed, evidencing the effect of stochastic perturbations of fibers distribution on simulative results on macro-scale.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

11-15

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G. Gutowski, Advanced composites manufacturing, John Wiley & Sons, New York, (1997).

Google Scholar

[2] V. A. F. Costa, and A. C. M. Sousa, Modeling offlow and thermo-kinetics during the cure of thicklaminated composites, Int. J. Therm. Sci., 42 (2003) 15-22.

Google Scholar

[3] H.C. Park, N.S. Goo, K.J. Min, K.J. Yoon, Three-dimensional cure simulation of composite structuresby the finite element method, Compos. Struct., 62 (2003) 51–57.

DOI: 10.1016/s0263-8223(03)00083-7

Google Scholar

[4] P. Carlone, G.S. Palazzo, Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates, Int. J. Mater. Form., 2 (2009) 137-140.

DOI: 10.1007/s12289-009-0450-8

Google Scholar

[5] Young W. -B. Compacting pressure and cure cycle for processing of thick composite laminates, Compos Sci. Technol. 54 (1995) 299-306.

DOI: 10.1016/0266-3538(95)00067-4

Google Scholar

[6] B. Yenilmez, E. M. Sozer, A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding, Compos. Part A: Appl. S., 40 (2009), 476-489.

DOI: 10.1016/j.compositesa.2009.01.014

Google Scholar

[7] P. Carlone, G.S. Palazzo, Flow monitoring and permeability measurements in LCM processes by the means of a dielectric sensor, Key Eng. Mat., 504-506 (2012) 289-294.

DOI: 10.4028/www.scientific.net/kem.504-506.289

Google Scholar

[8] C. Lekakou, S. Cook, Y. Deng, T.W. Ang, G.T. Reed, Optical fibre sensor for monitoring flow and resin curing in composite manufacturing, Compos Part A: Appl S, 37 (2006), 934-938.

DOI: 10.1016/j.compositesa.2005.03.003

Google Scholar

[9] D. Trias, J. Costa, J.A. Mayugo, J.E. Hurtado, Random models versus periodic models for fibre reinforced composites, Comp. Mater. Sci., 38 (2006) 316–324.

DOI: 10.1016/j.commatsci.2006.03.005

Google Scholar

[10] P. Carlone, G.S. Palazzo, A micro-scale model for fiber tow characterization undernondeterministic assumption: longitudinal and transverse permeability, Key Eng. Mat. 554-557 (2013) 2348-2354.

DOI: 10.4028/www.scientific.net/kem.554-557.2348

Google Scholar

[11] S. Sihn, A.K. Roy, Micromechanical analysis for transverse thermal conductivity of composites,J. Compos. Mater., 45(11) (2011)1245–1255.

DOI: 10.1177/0021998310382311

Google Scholar

[12] A.R. Melro, P.P. Camanho, S.T. Pinho, Generation of random distribution of fibres in long-fibre reinforced composites, Compos SciTechnol, 68 (2008) 2092–2102.

DOI: 10.1016/j.compscitech.2008.03.013

Google Scholar

[13] M. Valliappan, J.A. Roux, J.G. Vaughan, Die and post-die temperature and cure ingraphite/epoxy composites, Compos. B 27B (1996) 1–9.

DOI: 10.1016/1359-8368(95)00001-1

Google Scholar

[14] X.L. Liu, W. Hillier, Heat transfer and cure analysis for the pultrusion of a fiberglass-vinylester I beam, Compos. Struct., 47 (1999) 581–588.

DOI: 10.1016/s0263-8223(00)00029-5

Google Scholar