Effects of Process Parameters on the Particle Size Distribution of Graphene Oxide Aqueous Dispersion

Article Preview

Abstract:

During graphene oxide separation process, the effects of the process parameters such as centrifugal separation time and ultrasonic treatment time on the particle size distribution of graphene oxide aqueous dispersion were studied. The results show graphene oxide has the narrower particle size distribution and the smaller nominal effective particle size with increasing the centrifugal separation time from 20 min to 160 min. And there is a critical time in the ultrasonic treatment to obtain the narrower particle size distribution and smaller nominal effective particle size of graphene oxide. Graphene oxide has the narrower particle size distribution and the smaller nominal effective particle size when the ultrasonic treatment time is 4 h.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1113-1116

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde and C.D. Lokhande: Electrochim. Acta Vol. 92 (2013), p.205.

Google Scholar

[2] L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao and Z. Chen: Carbon Vol. 50 (2012), p.1690.

Google Scholar

[3] S. Zhang, J. Zhou, Q. Wang and P. Jena: J. Phys. Chem. C Vol. 117 (2013), p.1064.

Google Scholar

[4] D.R. Dreyer and C.W. Bielawski: Chem. Sci Vol. 2 (2011), p.1233.

Google Scholar

[5] J. Song, J. Yang, J. Zeng, J. Tan and L. Zhang: Sensor. Actuat. B: Chem Vol. 155 (2011), p.220.

Google Scholar

[6] B. Saner, F. Okyay and Y. Yürüm: Fuel Vol. 89 (2010), p. (1903).

Google Scholar

[7] S.D. Perera, R.G. Mariano, N. Nijem, Y. Chabal, J.P. Ferraris and K.J. Balkus: J. Power Sources Vol. 215 (2012), p.1.

DOI: 10.1016/j.jpowsour.2012.04.059

Google Scholar

[8] S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen: ACS Nano Vol. 5 (2011), p.6971.

Google Scholar

[9] D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff: Chem. Soc. Rev Vol. 39 (2010), p.228.

Google Scholar

[10] Y. He, G. Huang, J. Jiang, Q. Zhang and H. Cui: Carbon Vol. 56 (2013), p.201.

Google Scholar

[11] S. Pan and I.A. Aksay: ACS Nano Vol. 5 (2011), p.4073.

Google Scholar

[12] L. Zhang, J. Liang, Y. Huang, Y. Ma, Y. Wang and Y. Chen: Carbon Vol. 47(2009), p.3365.

Google Scholar

[13] Y. Yao, X. Chen, H. Guo and Z. Wu: Appl. Surf. Sci Vol. 257 (2011), p.7778.

Google Scholar

[14] G.X. Wang, B. Wang, J.S. Park, J. Yang, X.P. Shen and J. Yao: Carbon Vol. 47 (2009), p.68.

Google Scholar

[15] S.B. Liu, T.Y.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R.R. Jiang, J. Kong and Y. Chen: ACS Nano Vol. 5 (2011), p.6971.

Google Scholar