[1]
M. Jolanta, B. Stanisław: Relationship between the chemical form of nickel applied to the soil and its uptake and toxicity to barley plants (Hordeum vulgare L. ). Geoderma, Vol. 122 (2004), pp.247-255.
DOI: 10.1016/j.geoderma.2004.01.011
Google Scholar
[2]
L.P. Weng, T.M. Lexmond, A. Wolthoorn, E.J.M. Temminghoff, W.H. Van Riemsdijk: Phytotoxicity and bioavailability of nickel: chemical speciation and bioaccumulation. Environ. Toxicol. Chem. Vol. 22 (2004), pp.2180-2187.
DOI: 10.1897/02-116
Google Scholar
[3]
C.P. Rooney, F.J. Zhao, S.P. McGrath: Phytotoxicity of nickel in a range of European soils: influence of soil properties, Ni solubility and speciation. Environ. Pollut. Vol. 145 (2007), pp.596-605.
DOI: 10.1016/j.envpol.2006.04.008
Google Scholar
[4]
B. Li, H.T. Zhang, Y.B. Ma, M.J. McLaughlin: Influences of soil properties and leaching on nickel toxicity to barley root elongation [J]. Ecotox. Environ. Safe. Vol. 74 (2011), pp.459-466.
DOI: 10.1016/j.ecoenv.2010.10.021
Google Scholar
[5]
M. McBride, S. Sauve, W. Hendershot: Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. Vol. 48 (1997), pp.337-346.
DOI: 10.1111/j.1365-2389.1997.tb00554.x
Google Scholar
[6]
F.J. Zhao, C.P. Rooney, H. Zhang, S.P. McGrath: Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants. Environ. Toxicol. Chem. Vol. 25 (2006), pp.733-742.
DOI: 10.1897/04-603r.1
Google Scholar
[7]
E. Meers, G. Du Laing, F.M.G. Tack, M.G. Verloo: Heavy metal displacement by exchangeable bases (Ca, Mg, K, Na) in soils and sediments. Soil Sci. Vol. 174 (2009), p. 202e209.
DOI: 10.1097/ss.0b013e31819f601a
Google Scholar
[8]
K. Lock, H. Van Eeckhout, K.A. C De Schamphelaere, P. Criel, C.R. Janssen: Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare). Chemosphere. Vol. 66 (2007), pp.1346-1352.
DOI: 10.1016/j.chemosphere.2006.07.008
Google Scholar
[9]
B. Li, X. Zhang, X.D. Wang, Y.B. Ma: Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture. Ecotox. Environ. Safe. Vol. 72 (2009), pp.1760-1766.
DOI: 10.1016/j.ecoenv.2009.05.003
Google Scholar
[10]
D.S. Jenkinson, D.S. Powlson. The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass. Soil Biol. Biochem. Vol. 8 (1976), pp.209-213.
DOI: 10.1016/0038-0717(76)90005-5
Google Scholar
[11]
D.P. Stevens, M.J. McLaughlin, T. Heinrich: Determining toxicity of lead and zinc runoff in soils: salinity effects on metal partitioning and on phytotoxicity. Environ. Toxicol. Chem. Vol. 22 (2003), pp.3017-3024.
DOI: 10.1897/02-290
Google Scholar
[12]
K. Oorts, U. Ghesquiere, E. Smolders: Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride. Environ. Toxicol. Chem. Vol. 26 (2007), pp.1130-1138.
DOI: 10.1897/06-533r.1
Google Scholar
[13]
D.H. Thibault, M.I. Sheppard: A disposable system for soil pore-water extraction by centrifugation. Commun. Soil Sci. Plan. Vol. 23 (1992), pp.1629-1641.
DOI: 10.1080/00103629209368692
Google Scholar
[14]
L. Haanstra, P. Doelman, J.H.O. Voshaar: The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil. Vol. 84 (1985), pp.293-297.
DOI: 10.1007/bf02143194
Google Scholar
[15]
O. Schabenberger, B.E. Tharp, J.J. Kells, D. Penner: Statistical Tests for Hormesis and Effective Dosages in Herbicide Dose Response. Agron. J. Vol 4 (1999), pp.713-721.
DOI: 10.2134/agronj1999.914713x
Google Scholar
[16]
B. Li: Chinese Academy of Agricultural Sciences. D. Beijing, (2010), pp.37-39.
Google Scholar
[17]
D. Costantini, N.B. Metcalfe, P. Monaghan: Ecol. Lett. J. Vol. 11 (2010), pp.1435-1447.
Google Scholar
[18]
B.J. Kefford, L. Zalizniak, M. St.J. Warne, D. Nugegoda: Environ. Pollut. Vol. 3 (2008), pp.516-23.
Google Scholar
[19]
E.J. Calabrese: Environ. Pollut. Vol. 3 (2005), pp.379-411.
Google Scholar
[20]
X.Q. Zhang, D.P. Wei, B. Li, Y.B. Ma, Z.B. Huang: accepted by Chemical Speciation and Bioavailability (2013).
Google Scholar
[21]
X.Q. Zhang, D.P. Wei, B. Li, Y.B. Ma, Z.B. Huang: accepted by Soil China. (2013).
Google Scholar
[22]
S. Shabala: Ann. Bot. Vol. 92 (2003), p.627 – 634.
Google Scholar
[23]
A.A. Véry, H. Sentenac: Annu. Rev. Plant Biol. Vol. 54 (2003), pp.575-603.
Google Scholar
[24]
X.L. Tang, M.H. Gu, L.M. Pan, G.Z. L, D.X. Q: Soil and Fertilizer Sciences China. Vol. 3 (2007), pp.47-51.
Google Scholar