[1]
W.J. O'Brien, Dental Materials and Their Selection, fourth ed., Quintessence, Chicago, Berlin, Tokyo, London, Paris, Milan, Barcelona, Istanbul, Sao Paulo, Mumbai, Moscow, Prague, Warsaw, (2009).
Google Scholar
[2]
S.Y. Zheng, J. Zheng, S.S. Gao, B.J. Yu, H.Y. Yu, L.M. Qian, Z.R. Zhou, Investigation on the microtribological behaviour of human tooth enamel by nanoscratch, Wear 271. (9-10) (2011) 2290-2296.
DOI: 10.1016/j.wear.2010.11.020
Google Scholar
[3]
J. Zheng, Y. Li, M.Y. Shi, Y.F. Zhang, L.M. Qian, Z.R. Zhou, Microtribological behaviour of human tooth enamel and artificial hydroxyapatite, Tribiology International. 63(0) (2013) 177-185.
DOI: 10.1016/j.triboint.2012.04.019
Google Scholar
[4]
M. Ferraris, E. Verné, P. Appendino, C. Moisescu, A. Krajewski, A. Ravaglioli, A. Piancastelli, Coatings on zirconia for medical applications, Biomaterials. 21(8) (2000)765-773.
DOI: 10.1016/s0142-9612(99)00209-4
Google Scholar
[5]
X. Miao, Y. Chen, H. Guo and K.A. Khor, Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites, Ceramics International. 30(7) (2004)1793-1796.
DOI: 10.1016/j.ceramint.2003.12.117
Google Scholar
[6]
E. Chang, W.J. Chang, B.C. Wang, C.Y. Yang, Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium: Part I Phase, microstructure and bonding strength, Journal of Materials Science. 8(4) (1997)193-200.
Google Scholar
[7]
D. Curran, T. Fleming, M. Towler, S. Hampshire, Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods, Journal of Materials Science. 21(4) (2010) 1109-1120.
DOI: 10.1007/s10856-009-3974-z
Google Scholar
[8]
C.Y. Chiu, H.C. Hsu, W.H. Tuan, Effect of zirconia addition on the microstructural evolution of porous hydroxyapatite, Ceramics International. 33(5) (2007)715-718.
DOI: 10.1016/j.ceramint.2005.12.008
Google Scholar
[9]
H.W. Kim, Y.J. Noh, Y.H. Koh, H.E. Kim, H.M. Kim, Effect of CaF2 on densification and properties of hydroxyapatite–zirconia composites for biomedical applications, Biomaterials. 23(20) (2002) 4113.
DOI: 10.1016/s0142-9612(02)00150-3
Google Scholar
[10]
M.R. Towler, I.R. Gibson, The effect of low levels of zirconia addition on the mechanical properties of hydroxyapatite, Journal of Materials Science Letters. 20(18) (2001) 1719-1722.
Google Scholar
[11]
K.A. Khalil, S.W. Kim, H.Y. Kim, Consolidation and mechanical properties of nanostructured hydroxyapatite–(ZrO2+3mol% Y2O3) bioceramics by high-frequency induction heat sintering, Materials Science and Engineering. A 456(1–2) (2007) 368-372.
DOI: 10.1016/j.msea.2006.12.005
Google Scholar
[12]
C.J. Liao, F.H. Lin, K.S. Chen, J.S. Sun, Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, Biomaterials. 20(19) (1999) 1807-1813.
DOI: 10.1016/s0142-9612(99)00076-9
Google Scholar
[13]
S. Nath, K. Biswas, B. Basu, Phase stability and microstructure development in hydroxyapatite–mullite system, Scripta Materialia. 58(12) (2008) 1054-1057.
DOI: 10.1016/j.scriptamat.2008.01.045
Google Scholar
[14]
J. Cihlar, A. Buchal, M. Trunec, Kinetics of thermal decomposition of hydroxyapatite bioceramics. Journal of Materials Science, Journal of Materials Science. 34(24) (1999) 6121-6131.
DOI: 10.1023/a:1004769820545
Google Scholar
[15]
Z . Evis, Reactions in hydroxylapatite–zirconia composites, Ceramics International. 33(6) (2007) 987-991.
DOI: 10.1016/j.ceramint.2006.02.012
Google Scholar
[16]
Z. Evis, M. Usta, I. Kutbay, Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites, J Eur Ceram Soc. 29(4) (2009) 8.
DOI: 10.1016/j.jeurceramsoc.2008.07.020
Google Scholar
[17]
N.R.F.A. Silva, I. Sailer, Y. Zhang, P.G. Coelho, P.C. Guess, A. Zembic, R.J. Kohal, Performance of Zirconia for Dental Healthcare, Materials. 3(2) (2010) 863-896.
DOI: 10.3390/ma3020863
Google Scholar
[18]
C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceramics International. 37(3) (2011) 935-942.
DOI: 10.1016/j.ceramint.2010.11.001
Google Scholar
[19]
S.W. Kim, K.A. Khalil, S.L. Cockcroft, D. Hui, J.H. Lee, Sintering behavior and mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated sintering, Composites Part B: Engineering. 45(1) (2013) 1689-1693.
DOI: 10.1016/j.compositesb.2012.09.077
Google Scholar