Decomposition of Hydroxyapatite in Hydroxyapatite/Zirconia Composites for Dental Applications

Article Preview

Abstract:

Hydroxyapatite (HA) has been widely used as a biomaterial because HA has excellent biocompatibility, but the mechanical properties of HA are not sufficiently strong for dental applications. To enhance these mechanical properties, zirconia (ZrO2) has been introduced as a second phase material. However, doping of ZrO2 favors HA decomposition at low temperatures. In this paper, the effect of adding ZrO2 on HA decomposition is discussed. Experimental results in previous studies are compared with theoretical results of chemical equations. The ideal percentage of doped ZrO2 should be <10 wt.% to prevent HA decomposition unless a special sintering method is applied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1664-1668

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J. O'Brien, Dental Materials and Their Selection, fourth ed., Quintessence, Chicago, Berlin, Tokyo, London, Paris, Milan, Barcelona, Istanbul, Sao Paulo, Mumbai, Moscow, Prague, Warsaw, (2009).

Google Scholar

[2] S.Y. Zheng, J. Zheng, S.S. Gao, B.J. Yu, H.Y. Yu, L.M. Qian, Z.R. Zhou, Investigation on the microtribological behaviour of human tooth enamel by nanoscratch, Wear 271. (9-10) (2011) 2290-2296.

DOI: 10.1016/j.wear.2010.11.020

Google Scholar

[3] J. Zheng, Y. Li, M.Y. Shi, Y.F. Zhang, L.M. Qian, Z.R. Zhou, Microtribological behaviour of human tooth enamel and artificial hydroxyapatite, Tribiology International. 63(0) (2013) 177-185.

DOI: 10.1016/j.triboint.2012.04.019

Google Scholar

[4] M. Ferraris, E. Verné, P. Appendino, C. Moisescu, A. Krajewski, A. Ravaglioli, A. Piancastelli, Coatings on zirconia for medical applications, Biomaterials. 21(8) (2000)765-773.

DOI: 10.1016/s0142-9612(99)00209-4

Google Scholar

[5] X. Miao, Y. Chen, H. Guo and K.A. Khor, Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites, Ceramics International. 30(7) (2004)1793-1796.

DOI: 10.1016/j.ceramint.2003.12.117

Google Scholar

[6] E. Chang, W.J. Chang, B.C. Wang, C.Y. Yang, Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium: Part I Phase, microstructure and bonding strength, Journal of Materials Science. 8(4) (1997)193-200.

Google Scholar

[7] D. Curran, T. Fleming, M. Towler, S. Hampshire, Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods, Journal of Materials Science. 21(4) (2010) 1109-1120.

DOI: 10.1007/s10856-009-3974-z

Google Scholar

[8] C.Y. Chiu, H.C. Hsu, W.H. Tuan, Effect of zirconia addition on the microstructural evolution of porous hydroxyapatite, Ceramics International. 33(5) (2007)715-718.

DOI: 10.1016/j.ceramint.2005.12.008

Google Scholar

[9] H.W. Kim, Y.J. Noh, Y.H. Koh, H.E. Kim, H.M. Kim, Effect of CaF2 on densification and properties of hydroxyapatite–zirconia composites for biomedical applications, Biomaterials. 23(20) (2002) 4113.

DOI: 10.1016/s0142-9612(02)00150-3

Google Scholar

[10] M.R. Towler, I.R. Gibson, The effect of low levels of zirconia addition on the mechanical properties of hydroxyapatite, Journal of Materials Science Letters. 20(18) (2001) 1719-1722.

Google Scholar

[11] K.A. Khalil, S.W. Kim, H.Y. Kim, Consolidation and mechanical properties of nanostructured hydroxyapatite–(ZrO2+3mol% Y2O3) bioceramics by high-frequency induction heat sintering, Materials Science and Engineering. A 456(1–2) (2007) 368-372.

DOI: 10.1016/j.msea.2006.12.005

Google Scholar

[12] C.J. Liao, F.H. Lin, K.S. Chen, J.S. Sun, Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, Biomaterials. 20(19) (1999) 1807-1813.

DOI: 10.1016/s0142-9612(99)00076-9

Google Scholar

[13] S. Nath, K. Biswas, B. Basu, Phase stability and microstructure development in hydroxyapatite–mullite system, Scripta Materialia. 58(12) (2008) 1054-1057.

DOI: 10.1016/j.scriptamat.2008.01.045

Google Scholar

[14] J. Cihlar, A. Buchal, M. Trunec, Kinetics of thermal decomposition of hydroxyapatite bioceramics. Journal of Materials Science, Journal of Materials Science. 34(24) (1999) 6121-6131.

DOI: 10.1023/a:1004769820545

Google Scholar

[15] Z . Evis, Reactions in hydroxylapatite–zirconia composites, Ceramics International. 33(6) (2007) 987-991.

DOI: 10.1016/j.ceramint.2006.02.012

Google Scholar

[16] Z. Evis, M. Usta, I. Kutbay, Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites, J Eur Ceram Soc. 29(4) (2009) 8.

DOI: 10.1016/j.jeurceramsoc.2008.07.020

Google Scholar

[17] N.R.F.A. Silva, I. Sailer, Y. Zhang, P.G. Coelho, P.C. Guess, A. Zembic, R.J. Kohal, Performance of Zirconia for Dental Healthcare, Materials. 3(2) (2010) 863-896.

DOI: 10.3390/ma3020863

Google Scholar

[18] C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceramics International. 37(3) (2011) 935-942.

DOI: 10.1016/j.ceramint.2010.11.001

Google Scholar

[19] S.W. Kim, K.A. Khalil, S.L. Cockcroft, D. Hui, J.H. Lee, Sintering behavior and mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated sintering, Composites Part B: Engineering. 45(1) (2013) 1689-1693.

DOI: 10.1016/j.compositesb.2012.09.077

Google Scholar