Characterizations of Liquid Polycabosilane (LPCS) Used as SiC Matrix Precursor for CLVD Process

Article Preview

Abstract:

Characterizations of a liquid polycarbosilane used as SiC matrix precursor were investigated by TG-DTA, FTIR, XRD, etc, which indicated the feasibility of using LPCS as precursor for CLVD process to prepare C/SiC composites. The results show that the inorganic conversion of LPCS to SiC is almost completed at 900 °C, and the crystallization of β-SiC appears at 855 °C approximately. As the temperature increases, the deposit becomes more pure and the crystallinity of β-SiC also increases. The atomic ratio of C/Si in the deposit attained at 1200 °C is near-stoichiometric, the crystallite size of β-SiC is about 33.4 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

195-199

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Naslain: Compos. Sci. Techol. Vol. 64 (2004), p.155.

Google Scholar

[2] K.J. Torben, B. Povl: J. Am. Ceram. Soc. Vol. 84 (2001), p.1043.

Google Scholar

[3] S.A. Chen, H.F. Hu, Y.D. Zhang, X.B. He and M. Mei: Mater. Lett. Vol. 65 (2011), p.3137.

Google Scholar

[4] H. Okuno, M. Trinquecoste, A. Derre, M. Monthioux and P. Delhaes: J. Mater. Res. Vol. 17 (2002), p. (1904).

Google Scholar

[5] W. C Sun, H. J Li, H. M Han and S. Y Zhang: Mater. Sci. Eng. A Vol. 369 (2004), p.245.

Google Scholar

[6] D. Rovillain, M. Trinquecoste, E. Bruneton, A. Derre P. Davida and P. Delhaes: Carbon Vol. 39 (2001), p.1355.

Google Scholar

[7] J. P Wang, J. M Qian, G. J Qian, and Z. H Jin: Mater. Lett. Vol. 60 (2006), p.1269.

Google Scholar

[8] M. Houdayer, J. Spitz, and D. Tran-Van, U.S. Patent 4, 472, 454 (1984).

Google Scholar

[9] I. Golecki: Mater. Sci. Eng. R. Vol. 20 (1997), p.37.

Google Scholar

[10] P. Delhaes, M. Trinquecoste, J. F Lines, A. Cosculluela, J. M Goyheneche and M. Couzi: Carbon Vol. 43 (2005), p.681.

Google Scholar

[11] H. L Deng, K. Z Li, H. J Li, L. T Zhang and W. F Cao: Carbon Vol. 49 (2011), p.2561.

Google Scholar

[12] E. Bruneton, B. Nancy, A. Oberlin: Carbon Vol. 35 (1997), p.1593.

Google Scholar

[13] X. G Zhou, Y. You, C. R Zhang, B. Y Huang and X. Y Liu: Mater. Sci. Eng. A Vol. 433 (2006), p.104.

Google Scholar

[14] S. F Tang, J. Y Deng, S. J Wang, and W. C Liu: Mater. Sci. Eng. A Vol. 465 (2007), p.290.

Google Scholar

[15] M. Mei, X. B He, X. X Qu, H. F Hu, Y. D Zhang and S. A Chen: Mater. Lett. Vol. 82 (2012), p.36.

Google Scholar

[16] C. C Zhou, C. R Zhang, H. F Hu, Y. D Zhang and Z. Y Wang: Mater. Sci. Eng. A Vol. 488 (2008), p.569.

Google Scholar

[17] H. B Li, L. T Zhang, L. F Cheng, Y. G Wang, Z. J Yu, M. H Huang, H. B Tu and H. P Xia: J. Mater. Sci. Vol. 43 (2008), p.2806.

Google Scholar

[18] H. Q Ly, R. Taylor, R. J Day, and F. Heatley: J. Mater. Sci. Vol. 36 (2001), p.4045.

Google Scholar

[19] A. Idesaki, Y. Miwa, Y. Katase, M. Nirisawa, K. Okamura and M. Itoh: J. Mater. Sci. Vol. 38 (2003), p.2591.

DOI: 10.1023/a:1024470115744

Google Scholar

[20] Z. J Yu, R. Li, J. Y Zhan, C. Zhou, L. Yang, G. M He and H. P Xia: J. Appl. Polym. Sci. Vol. 121 (2011), p.3400.

Google Scholar

[21] Z. J Yu, L. Yang, J. Y Zhan, C. Zhou, H. Min, Q. Zheng and H. P Xia: J. Eur. Ceram. Soc. Vol. 32 (2012), p.1291.

Google Scholar

[22] H. Q Ly, R. Taylor, R. J Day and F. Heatley: J. Mater. Sci. Vol. 36 (2001), p.4037.

Google Scholar