Fabrication of Micro-Structural ZnO Crystal and the Concentration Fields of the CVD Reactor

Article Preview

Abstract:

Arrayed ZnO crystals were fabricated with Zn as raw material by thermal chemical vapor deposition in a tubular reactor. The characterizations indicate the product grown at upstream is the well-arrayed ZnO submicro-column with good crystal properties, that at downstream is well-arrayed nanoneedle with more defects. In combination of mass field analysis with Fluent, it is revealed that the concentration fields at the upstream and downstream positions of Zn source are not identical even in an identical temperature field. It is the diffusion that drives Zn vapor move to upstream position where the O2 is rich, and the amount diffuse to upstream is rare due to the transportation of working gas. Most of O2 is consumed when passes the Zn source, leading to more lean O2 but rich Zn at the downstream position of Zn source. Our results support that lower concentration of Zn and O2 is in favor of the formation of perfect crystal as happened at upstream, but in such condition that more Zn and rare O2, defects of O vacancy is liable to form during ZnO growth.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

352-357

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. L. Wang: J. Phys.: Condens. Matter Vol. 16 (2004), p.829.

Google Scholar

[2] Z. L. Wang: Appl. Phys. A Vol. 88 (2007), p.7.

Google Scholar

[3] M. Ohyama, H. Kouzuka and T. Yoko: Thin Solid Films, Vol. 306 (1997), p.78.

Google Scholar

[4] B. Liu and H. C. Zeng: J. Am. Chem. Soc. Vol. 125 (2003), p.4430.

Google Scholar

[5] Y.Q. Bie, Z. M. Liao, H. J. Xu, X. Z. Zhang, X. D. Shan and D. P. Yu: Appl. Phys. A Vol. 98 (2010), p.491.

Google Scholar

[6] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.J. Choi: Adv. Funct. Mater. Vol. 12 (2002), p.323.

DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g

Google Scholar

[7] A. Umar and Y. B. Hahn: Cryst. Growth Des. Vol. 8 (2008), p.2741.

Google Scholar

[8] C. Li, G. Fang, N. Liu, J. Li, L. Liao, F. Su, G. Li, X. Wu and X. Zhao: J. Phys. Chem. C Vol. 111 (2007), p.12566.

Google Scholar

[9] K. Al-Azri, R. M. Nor, Y. M. Amin and M. S. Al-Ruqeishi: Appl. Surf. Sci. Vol. 256 (2010), p.5957.

Google Scholar

[10] Q. Wei, G. Meng, X. An, Y. Hao and L. Zhang: Nanotechnology, Vol. 16 (2005), p.2561.

Google Scholar

[11] X. Han, G. Wang, J. Jie, W. C. H. Choy, Y. Luo, T. I. Yuk and J. G. Hou: J. Phys. Chem. B. Vol. 109 (2005), p.2733.

Google Scholar

[12] D. Fan, R. Zhang and X. Wang: Physica E. Vol. 42 (2010), p. (2081).

Google Scholar

[13] Y. Fang, Y. Wang, Y. Wan, Z. Wang and J. Sha: J. Phys. Chem. C. Vol. 114 (2010), p.12469.

Google Scholar

[14] L. C. Chao, M. Y. Hsieh and S. H. Yang: Appl. Surf. Sci. Vol. 254(2008), p.7464.

Google Scholar

[15] Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C. B. Jiang, M. Chyu and S. X. Mao: Scripta Mater. Vol. 52 (2005), p.63.

Google Scholar

[16] P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee: Nanotechnology. Vol. 15(2004), p.320.

Google Scholar

[17] X. L. Xu, S. P. Lau, J. S. Chen, G. Y. Che, and B. K. Tay: J. Cryst. Growth. Vol. 223(2001), p.201.

Google Scholar

[18] J. J. Wu, and S. C. Liu: J. Phys. Chem.B. Vol. 106(2002), p.9546.

Google Scholar

[19] O. E. Kashireninov, V. A. Kuznetsov, and L. F. Repka: Russ. J. Phys. Chem. (Engl. Transl. ). Vol. 52(1978), P. 107.

Google Scholar