Hydrothermal Preparation and Characterization of ZnO with Various Morphologies for Dye-Sensitized Solar Cells

Article Preview

Abstract:

Zinc oxide (ZnO) with various morphologies consisting of nanoparticles with a diameter of approximately 20 nm have been successfully prepared by hydrothermal method from zinc nitrate (Zn (NO3)2)/carbamide (CO(NH2)2) solution. The morphologies and phase structures of the as-prepared ZnO samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD). Results show that the morphologies of the as-prepared ZnO are successively present in broom-like, cabbage-like, chinese cabbage-like, honeycomb-like with the increase of the CO(NH2)2 concentration from 0.1 M to 1 M. The photovoltaic performances of dye-sensitized solar cells, based on ZnO with various morphologies as the photoelectrodes, are unobvious. With the morphologies of ZnO evolving, the short circuit photocurrent density (Jsc) increases from 2.35 to 3.72 mA/cm2, the fill factor (FF) increases from 0.400 to 0.570, and the corresponding conversion efficiency (η) varies from 0.520 % to 1.200 %. The low η may be due to the formation of the Zn2+/dye polymers.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

873-876

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] T. N. Murakami and M. Grätzel: Inorg. Chim. Acta. Vol. 361 (2008), p.572.

Google Scholar

[3] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel: Science Vol. 334 (2011), p.629.

DOI: 10.1126/science.1209688

Google Scholar

[4] D. Chen, H. Zhang, S. Hu and J. H. Li: J. Phys. Chem. C Vol. 112 (2008), p.117.

Google Scholar

[5] K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. J. Feng, M. Paulose , J. A. Seabold, K. S. Choi and C. A. Grimes: J. Phys. Chem. C Vol. 113 (2009), p.6327.

DOI: 10.1021/jp809385x

Google Scholar

[6] A. I. Hochbaum and P. D. Yang: Chem. Rev. Vol. 110 (2010), p.527.

Google Scholar

[7] T. P. Chou, Q. F. Zhang, G. E. Fryxell and G. Z. Cao: Adv. Mater. Vol. 19 (2007), p.2588.

Google Scholar

[8] Z. F. Liu, Y. B. Li, C. C. Liu, J. Ya, W. Zhao, L. E, D. Zhao and L. An: Solid State Scien. Vol. 13 (2011), p.1354.

Google Scholar

[9] N. Anders and M. Grätzel: J. Phys. Chem. B Vol. 103 (1999), p.7831.

Google Scholar

[10] L. Li, S. S. Pan, X. C. Dou, Y. G. Zhu , X. H. Huang , Y. W. Yang , G. H. Li and L. D. Zhang: J. Phys. Chem. C Vol. 111 (2007), p.7288.

Google Scholar

[11] W. Chen, H. F. Zhang, I. M. Hsing and S. H. Yang: Electrochem. Commun. Vol. 11 (2009), p.1057.

Google Scholar

[12] C. Y. Jiang, X. W. Sun, G. Q. Lo and D. L. Kwong: Appl. Phy. Lett. Vol. 90 (2007), p.263501.

Google Scholar

[13] J. Chung,J. Myoung,J. Oh and S. Lim: J. Phys. Chem. C Vol. 114 (2010), p.21360.

Google Scholar

[14] Y. J. Shin, J. H. Lee, J. H. Park: Chem. Lett. Vol. 36 (2007), p.1506.

Google Scholar

[15] Z.H. Xiao, W. B. Liao, S.J. Xu, W. Zhong, S. G. Li and Y. P. Luo: Journal of Xinyu university Vol. 17(6) (2012), p.1.

Google Scholar