[1]
Brorson, S.D., J.G. Fujimoto, and E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films. Physical Review Letters, 1987. 59(17): 1962-(1965).
DOI: 10.1103/physrevlett.59.1962
Google Scholar
[2]
Elsayed-Ali, H.E., et al., Time-resolved observation of electron-phonon relaxation in copper. Physical Review Letters, 1987. 58(12): 1212-1215.
DOI: 10.1103/physrevlett.58.1212
Google Scholar
[3]
Qiu, T.Q. and C.L. Tien, Femtosecond Laser Heating of Multi-layer Metals-Ⅰ. Analysis. Int. J. Heat Mass Transfer, 1994. 37(17): 2789-2797.
DOI: 10.1016/0017-9310(94)90396-4
Google Scholar
[4]
Yaping Han, Shaoze Wang, Qingwen Wang, Jinxin Wang, Minghai Luo. Theoretical and experimental analysis on magnetron sputtering film thickness distribution. Advanced Materials Research, 2012, 450-451: 334-337.
DOI: 10.4028/scientific5/amr.450-451.334
Google Scholar
[5]
Qiu, T.Q., et al., Femtosecond Laser-Heating of Multilayer Metals-Ⅱ. Experiments. International Journal of Heat and Mass Transfer, 1994. 37(17): 2799-2808.
DOI: 10.1016/0017-9310(94)90397-2
Google Scholar
[6]
G.D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods (Third Editon). Oxford University Press, (1985).
Google Scholar
[7]
Qiu T Q, Tien C L. Short-Pulse Laser-Heating on Metals [J]. International Journal of Heat and Mass Transfer, 1992, 35(3): 719-726.
DOI: 10.1016/0017-9310(92)90131-b
Google Scholar
[8]
Pavel L. Komarov, Mihai G. Burzo, Gunhan Kaytaz, Peter E. Raad. Transient thermo-reflectance measurements of the thermal conductivity and interface resistance of metallized natural and isotopcally-pure silicon. Microelectronics Journal, 2003, 34: 1115–1118.
DOI: 10.1016/s0026-2692(03)00201-5
Google Scholar