Application of Link Prediction in Temporal Networks

Article Preview

Abstract:

Link prediction is an important research hotspot in complex networks.Correlational studies merely use static topology for prediction, without considering the influence of network dynamic evolutionary process on link prediction. We believe that the linksare derived from the evolutionary process of network, and dynamic network topology will contain more information, Moreover, many networks have time attribute naturally, which is apt to combine the similarity of time and structure for link prediction. The paper proposes the concept of active factor using time attribute, to extend the similaritybased link prediction framework.Thenmodeland analysis the data of citation network and cooperation network with temporal networks.Design the active factors for both network sand verify the performance of these new indexes. The results shows that the indexes with active factor perform better than structure similarity based indexes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

2231-2236

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Watts D J, Strogatz S H. Collective dynamics of small-world, networks. Nature. 1998, 393: 440~442.

DOI: 10.1038/30918

Google Scholar

[2] Barabási A L, Albert R. Emergence of scaling in random networks. Science. 1999, 286: 509-512.

Google Scholar

[3] Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. ACM S1GCOMM Computer Communication Review, 1999, 29(4): 251.

DOI: 10.1145/316194.316229

Google Scholar

[4] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the web. Technical report, Stanford University. (1998).

Google Scholar

[5] L.A. Adamic, E. Adar. R E.Friends and neighbors on the web Social Networks. 2003, 25, 211-230.

DOI: 10.1016/s0378-8733(03)00009-1

Google Scholar

[6] Guimera R, Sales-Pardo M. Missing and spurious interactions and the reconstruction of complex networks. Proc Natl Sci Acad US. 2009. l06(52):22073-22078.

DOI: 10.1073/pnas.0908366106

Google Scholar

[7] Liben-Nowell, D, Kleinberg J. The link prediction problem for social networks. J Am Soc Inform Sci Technol. 2007, 58(7): 1019–1031.

DOI: 10.1002/asi.20591

Google Scholar

[8] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks. Nature. 453: 98–101, (2008).

DOI: 10.1038/nature06830

Google Scholar

[9] Zhou T, Lü L Y, Zhang Y C. Predicting missing links via local information. Eur Phys J B. 2009, 71(4): 623~63.

DOI: 10.1140/epjb/e2009-00335-8

Google Scholar

[10] Petter Holme, Jari Saramäki , Temporal Networks, Phys. Rep. 519, 97-125 (2012).

Google Scholar

[11] Lu L, Jin C H, Zhou T. Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E. 2009, 80: 046122.

DOI: 10.1103/physreve.80.046122

Google Scholar

[12] P. Jaccard. Bulletin de la Societe Vaudoise des SciencesNaturelles. 37, 547 (1901).

Google Scholar

[13] L.A. Adamic, E. Adar. R E.Friends and neighbors on the web Social Networks. 2003, 25, 211~230.

DOI: 10.1016/s0378-8733(03)00009-1

Google Scholar

[14] J. Leskovec, J. Kleinberg and C. Faloutsos. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), (2005).

DOI: 10.1145/1081870.1081893

Google Scholar

[15] J. Gehrke, P. Ginsparg, J. M. Kleinberg. Overview of the 2003 KDD Cup. SIGKDD Explorations 5(2): 149-151, (2003).

DOI: 10.1145/980972.980992

Google Scholar

[16] Xu Feng, Jichang Zhao, Ke Xu, Link prediction in complex networks: A clustering perspective, European Physica B, VOL 85, Jan2012.

Google Scholar