Global Synchronization of Moving Agent Networks with Time-Varying Topological Structure

Article Preview

Abstract:

The synchronization of moving agent networks with linear coupling in a two dimensional space is investigated. Base on the Lyapunov stability theory, a criterion for the synchronization is achieved via designed decentralized controllers. And, an example of typical moving agent network, having the Rössler system at each node, has been used to demonstrate and verify the design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

2294-2299

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Albert and A. L. Barabasi, Statistical mechanics of complex networks, Reviews of Modern Physics, vol. 74, pp.47-97, Jan (2002).

Google Scholar

[2] S. A. Pandit and R. E. Amritkar, Characterization and control of small-world networks, Physical Review E, vol. 60, pp. R1119-R1122, Aug (1999).

DOI: 10.1103/physreve.60.r1119

Google Scholar

[3] S. H. Strogatz, Exploring complex networks, Nature, vol. 410, pp.268-276, Mar (2001).

Google Scholar

[4] M. Barahona and L. M. Pecora, Synchronization in Small-World Systems, Physical Review Letters, vol. 89, p.054101, (2002).

Google Scholar

[5] X. F. Wang and G. R. Chen, Synchronization in scale-free dynamical networks: Robustness and fragility, Ieee Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 49, pp.54-62, Jan (2002).

DOI: 10.1109/81.974874

Google Scholar

[6] S. Boccaletti, et al., Complex networks: Structure and dynamics, Physics Reports-Review Section of Physics Letters, vol. 424, pp.175-308, Feb (2006).

Google Scholar

[7] J. G. Barajas-Ramírez, Robust synchronization of a class of uncertain complex networks via discontinuous control, Computers and Mathematics with Applications, vol. 64, pp.956-964, (2012).

DOI: 10.1016/j.camwa.2012.01.082

Google Scholar

[8] X. Guo and J. Li, A new synchronization algorithm for delayed complex dynamical networks via adaptive control approach, Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp.4395-4403, (2012).

DOI: 10.1016/j.cnsns.2012.03.022

Google Scholar

[9] W. Guo, Lag synchronization of complex networks via pinning control, Nonlinear Analysis: Real World Applications, vol. 12, pp.2579-2585, (2011).

DOI: 10.1016/j.nonrwa.2011.03.007

Google Scholar

[10] S. Zheng, et al., Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling, Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp.284-291, (2012).

DOI: 10.1016/j.cnsns.2010.11.029

Google Scholar

[11] J. H. Lu and G. R. Chen, A time-varying complex dynamical network model and its controlled synchronization criteria, Ieee Transactions on Automatic Control, vol. 50, pp.841-846, Jun (2005).

DOI: 10.1109/tac.2005.849233

Google Scholar

[12] D. J. Stilwell, et al., Sufficient conditions for fast switching synchronization in time-varying network topologies, Siam Journal on Applied Dynamical Systems, vol. 5, pp.140-156, (2006).

DOI: 10.1137/050625229

Google Scholar

[13] X. B. Lu, et al., Global Synchronization of Directed Networks with Fast Switching Topologies, Communications in Theoretical Physics, vol. 52, pp.1019-1024, Dec (2009).

Google Scholar

[14] B. Z. Qin and X. B. Lu, Adaptive approach to global synchronization of directed networks with fast switching topologies, Physics Letters A, vol. 374, pp.3942-3950, (2010).

DOI: 10.1016/j.physleta.2010.07.060

Google Scholar

[15] M. Frasca, et al., Synchronization of Moving Chaotic Agents, Physical Review Letters, vol. 100, p.044102, (2008).

Google Scholar

[16] A. Buscarino, et al., Dynamical network interactions in distributed control of robots, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 16, pp.015116-10, (2006).

DOI: 10.1063/1.2166492

Google Scholar

[17] S. Dano, et al., Sustained oscillations in living cells, Nature, vol. 402, pp.320-322, (1999).

Google Scholar

[18] L. Q. Peng, et al., Consensus of self-driven agents with avoidance of collisions, Physical Review E, vol. 79, p.026113, Feb (2009).

Google Scholar

[19] M. Frasca, et al., Dynamical network model of infective mobile agents, Physical Review E, vol. 74, p.036110, (2006).

Google Scholar

[20] L. Wang, et al., Induced synchronization of a mobile agent network by phase locking, Physical Review E, vol. 82, p.046222, (2010).

Google Scholar

[21] K. Li and C. Lai, Adaptive–impulsive synchronization of uncertain complex dynamical networks, Physics Letters A, vol. 372, pp.1601-1606, (2008).

DOI: 10.1016/j.physleta.2007.10.020

Google Scholar

[22] D. Li, et al., Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, Journal of Mathematical Analysis and Applications, vol. 323, pp.844-853, (2006).

DOI: 10.1016/j.jmaa.2005.11.008

Google Scholar