[1]
R. Albert and A. L. Barabasi, Statistical mechanics of complex networks, Reviews of Modern Physics, vol. 74, pp.47-97, Jan (2002).
Google Scholar
[2]
S. A. Pandit and R. E. Amritkar, Characterization and control of small-world networks, Physical Review E, vol. 60, pp. R1119-R1122, Aug (1999).
DOI: 10.1103/physreve.60.r1119
Google Scholar
[3]
S. H. Strogatz, Exploring complex networks, Nature, vol. 410, pp.268-276, Mar (2001).
Google Scholar
[4]
M. Barahona and L. M. Pecora, Synchronization in Small-World Systems, Physical Review Letters, vol. 89, p.054101, (2002).
Google Scholar
[5]
X. F. Wang and G. R. Chen, Synchronization in scale-free dynamical networks: Robustness and fragility, Ieee Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 49, pp.54-62, Jan (2002).
DOI: 10.1109/81.974874
Google Scholar
[6]
S. Boccaletti, et al., Complex networks: Structure and dynamics, Physics Reports-Review Section of Physics Letters, vol. 424, pp.175-308, Feb (2006).
Google Scholar
[7]
J. G. Barajas-Ramírez, Robust synchronization of a class of uncertain complex networks via discontinuous control, Computers and Mathematics with Applications, vol. 64, pp.956-964, (2012).
DOI: 10.1016/j.camwa.2012.01.082
Google Scholar
[8]
X. Guo and J. Li, A new synchronization algorithm for delayed complex dynamical networks via adaptive control approach, Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp.4395-4403, (2012).
DOI: 10.1016/j.cnsns.2012.03.022
Google Scholar
[9]
W. Guo, Lag synchronization of complex networks via pinning control, Nonlinear Analysis: Real World Applications, vol. 12, pp.2579-2585, (2011).
DOI: 10.1016/j.nonrwa.2011.03.007
Google Scholar
[10]
S. Zheng, et al., Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling, Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp.284-291, (2012).
DOI: 10.1016/j.cnsns.2010.11.029
Google Scholar
[11]
J. H. Lu and G. R. Chen, A time-varying complex dynamical network model and its controlled synchronization criteria, Ieee Transactions on Automatic Control, vol. 50, pp.841-846, Jun (2005).
DOI: 10.1109/tac.2005.849233
Google Scholar
[12]
D. J. Stilwell, et al., Sufficient conditions for fast switching synchronization in time-varying network topologies, Siam Journal on Applied Dynamical Systems, vol. 5, pp.140-156, (2006).
DOI: 10.1137/050625229
Google Scholar
[13]
X. B. Lu, et al., Global Synchronization of Directed Networks with Fast Switching Topologies, Communications in Theoretical Physics, vol. 52, pp.1019-1024, Dec (2009).
Google Scholar
[14]
B. Z. Qin and X. B. Lu, Adaptive approach to global synchronization of directed networks with fast switching topologies, Physics Letters A, vol. 374, pp.3942-3950, (2010).
DOI: 10.1016/j.physleta.2010.07.060
Google Scholar
[15]
M. Frasca, et al., Synchronization of Moving Chaotic Agents, Physical Review Letters, vol. 100, p.044102, (2008).
Google Scholar
[16]
A. Buscarino, et al., Dynamical network interactions in distributed control of robots, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 16, pp.015116-10, (2006).
DOI: 10.1063/1.2166492
Google Scholar
[17]
S. Dano, et al., Sustained oscillations in living cells, Nature, vol. 402, pp.320-322, (1999).
Google Scholar
[18]
L. Q. Peng, et al., Consensus of self-driven agents with avoidance of collisions, Physical Review E, vol. 79, p.026113, Feb (2009).
Google Scholar
[19]
M. Frasca, et al., Dynamical network model of infective mobile agents, Physical Review E, vol. 74, p.036110, (2006).
Google Scholar
[20]
L. Wang, et al., Induced synchronization of a mobile agent network by phase locking, Physical Review E, vol. 82, p.046222, (2010).
Google Scholar
[21]
K. Li and C. Lai, Adaptive–impulsive synchronization of uncertain complex dynamical networks, Physics Letters A, vol. 372, pp.1601-1606, (2008).
DOI: 10.1016/j.physleta.2007.10.020
Google Scholar
[22]
D. Li, et al., Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, Journal of Mathematical Analysis and Applications, vol. 323, pp.844-853, (2006).
DOI: 10.1016/j.jmaa.2005.11.008
Google Scholar