The Projectively Flat Conditions of One Special Class (α, β)-Metrics

Article Preview

Abstract:

The-metric is an important class of Finsler metrics including Randers metric as the simplest class, and many people research the Randers metrics. In this paper, we study a new class of Finsler metrics in the form ,Whereis a Riemannian metric, is a 1-form. Bengling Li had introduced the projective flat of the-Metric F. We find another method which is about flag curvature to prove the projective flat conditions of this kind of-metric.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

2528-2532

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. B. Shen and L. Zhao. Some Projectively Flat-metrics. Science in China(Series A). 2006, 49(6): 838-851.

DOI: 10.1007/s11425-006-0838-6

Google Scholar

[2] Shen, Z., Chen,X., On Douglas metrics. Publ Math Debrecen. vol. 66, 503-512 , (2005).

DOI: 10.5486/pmd.2005.3192

Google Scholar

[3] Kitayama M., Azuma m. and Matsumoto M., On finsler spaces with- metric. Regularity, geodesics and main scalar, J. of Hokkaido Univ. of Education( Section II A), 46(1)(1995), 1-10.

Google Scholar

[4] Cheng, X., Mo, X., Shen, Z., On the flag curvature of Finsler metrics of scalar curvature. J. London Math. Soc. 68(2): 762-780 (2003).

DOI: 10.1112/s0024610703004599

Google Scholar

[5] Najafi B, A. Tayebi, Shen, Z., Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties. Geometry Dedicate. 2008, 131: 87-97.

DOI: 10.1007/s10711-007-9218-9

Google Scholar

[6] Shen, Z., Chern, S. S., Riemman-Finsler Geometry. Word Scientific Publisher, Singapore. (2005).

Google Scholar

[7] Amari, S. I., Nagaoka, H., Methods of Information Geometry. AMS Translation of Math. Monographs, 191, Oxford University Press.

Google Scholar

[8] Cheng, X., Mo, X., Shen, Z., On the flag curvature of Finsler metrics of scalar curvature. J. London Math. Soc. 68(2): 762-780 (2003).

DOI: 10.1112/s0024610703004599

Google Scholar

[9] S. S. Chern and Z. Shen, Riemann-Finsler geometry, World scientific, (2005).

Google Scholar

[10] X. Mo. An Introduction to Finsler geometry. World Scientific, (2006).

Google Scholar

[11] D. Bao, S. S. Chern and Z. Shen. An introduction to Finsler geometry, Graduate, Texts in Mathematics 200. Springer-Verlag, New York, (2000).

DOI: 10.1007/978-1-4612-1268-3

Google Scholar

[12] B. Chen and L. Zhao. A note on Randers metrics of scalar flag curvature. Cana., Math. Bull. to appear.

Google Scholar