On the First-Order Markov Model for the PLC Fading Channel

Article Preview

Abstract:

The power line communications (PLC) channel is noisy one, which can be modeled by the Markov process. The order is the key concerning when used the Markov process. the level of complexity will be incurred from using higher order , while the first-order Markov models may lead to the less accurate channel response. In the paper, the first-order Markov channel is under thoroughly discussion, and it can provide a mathematically tractable model for time-varying channels and uses only the received SNR of the symbol immediately preceding the current one. With the first-order Markov chain, given the information of the symbol immediately preceding the current one, any other previous symbol should be independent of the current one. We show that given the information corresponding to the previous symbol, the amount of uncertainty remaining in the current symbol should be negligible. That means the first-order of Markov process is enough when modeled the PLC channel.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

2644-2648

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Liu, M. Sigle, and K. Dostert, Channel characterization and system verification for narrowband power line communication in smart grid applications, IEEE Communications Magazine, vol. 49, no. 12, p.28–35, (2011).

DOI: 10.1109/mcom.2011.6094003

Google Scholar

[2] B. Adebisi, A. Treytl, A. Haidine, A. Portnoy, R. U. Shan, D. Lund, H. Pille, and B. Honary, Ip-centric high rate narrowband plc for smart grid applications, IEEE Communications Magazine, vol. 49, no. 12, p.46–54, (2011).

DOI: 10.1109/mcom.2011.6094005

Google Scholar

[3] S. Kim, E. Y. Kwon, M. Kim, J. H. Cheon, S. ho Ju, Y. hoon Lim, and M. seok Choi, A secure smart-metering protocol over power-line communication, vol. 26, no. 4, p.2370–2379, (2011).

DOI: 10.1109/tpwrd.2011.2158671

Google Scholar

[4] M. -Y. Zhai, Transmission characteristics of low-voltage distribution networks in china under the smart grids environment, IEEE Transactions on Power Delivery, vol. 26, no. 1, p.173–180, (2011).

DOI: 10.1109/tpwrd.2010.2067228

Google Scholar

[5] S. Barmada, A. Musolino, M. Raugi, R. Rizzo, and M. Tucci, A wavelet based method for the analysis of impulsive noise due to switch commutations in power line communication (plc) systems, IEEE Transactions on Smart Grid, vol. 2, no. 1, p.92–101, (2011).

DOI: 10.1109/tsg.2010.2099135

Google Scholar

[6] M. Nassar, J. Lin, Y. Mortazavi, A. Dabak, I. H. Kim, and B. L. Evans, Local utility power line communications in the 3–500 khz band: Channel impairments, noise, and standards, IEEE Signal Processing Magazine, vol. 29, no. 5, p.116–127, (2012).

DOI: 10.1109/msp.2012.2187038

Google Scholar

[7] M. -Y. Zhai, Signal recovery in power-line communications systems based on the fractals, IEEE Transactions on Power Delivery, vol. 26, no. 3, p.1864–1872, (2011).

DOI: 10.1109/tpwrd.2011.2129540

Google Scholar

[8] W. Song and W. Zhuang, Performance analysis of probabilistic multipath transmission of video streaming traffic over multi-radio wireless devices, IEEE Transactions on Wireless Communications, vol. 11, no. 4, p.1554–1564, (2012).

DOI: 10.1109/twc.2012.021512.111397

Google Scholar

[9] D. Rey Iglesias and M. Garcia Sanchez, Semi-markov model for low-elevation satellite–earth radio propagation channel, IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, p.2481–2490, (2012).

DOI: 10.1109/tap.2012.2189707

Google Scholar

[10] L. E. Braten and T. Tjelta, Semi-markov multistate modeling of the land mobile propagation channel for geostationary satellites, IEEE Transactions on Antennas and Propagation, vol. 50, no. 12, p.1795–1802, (2002).

DOI: 10.1109/tap.2002.807441

Google Scholar

[11] L. Lei, J. Zhou, X. Chen, L. Qi, and S. Cai, Modelling and analysing medium access delay for differentiated services in ieee 802. 11s wireless mesh networks, IET Networks, vol. 1, no. 2, p.91–99, (2012).

DOI: 10.1049/iet-net.2012.0010

Google Scholar

[12] S. Yuksel, Random-time, state-dependent stochastic drift for markov chains and application to stochastic stabilization over erasure channels, IEEE Transactions on Automatic Control, to be published, early Access.

DOI: 10.1109/tac.2012.2204157

Google Scholar

[13] M. Riediger and E. Shwedyk, Communication receivers based on markov models of the fading channel, IEE Proceedings- Communications, vol. 150, no. 4, p.275–279, (2003).

DOI: 10.1049/ip-com:20030410

Google Scholar

[14] F. Wang, J. Huang, and Y. Zhao, Delay sensitive communications over cognitive radio networks, IEEE Transactions on Wireless Communications, vol. 11, no. 4, p.1402–1411, (2012).

DOI: 10.1109/twc.2012.020812.110133

Google Scholar

[15] K. Fukawa, H. Suzuki, and Y. Tateishi, Packet-error-rate analysis using markov models of the signal-to-interference ratio for mobile packet systems, IEEE Transactions on Vehicular Technology, vol. 61, no. 6, p.2517–2530, (2012).

DOI: 10.1109/tvt.2012.2197231

Google Scholar

[16] M. -y. ZHAI and Z. Qing-an, Markov characterization of lv power line communications systems channels, Proceedings of the CSEE, vol. 27, no. 22, p.116–121, 8 (2007).

Google Scholar

[17] S. Galli, A. Scaglione, and Z. Wang, For the grid and through the grid: The role of power line communications in the smart grid, Proceedings of the IEEE, vol. 99, no. 6, p.998–1027, (2011).

DOI: 10.1109/jproc.2011.2109670

Google Scholar