[1]
W.G. Aiello and H.I. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., Vol. 101, No. 2, p.139–153, (1990).
DOI: 10.1016/0025-5564(90)90019-u
Google Scholar
[2]
S.Q. Liu, L.S. Chen and R. Agarwal, Recent progress on stage structured population dynamics, Math. Comput. Model., Vol. 36, No. 11-13, p.1319–1360, (2002).
DOI: 10.1016/s0895-7177(02)00279-0
Google Scholar
[3]
S.Y. Li, Z.L. Xiong and X. Wang, Hopf bifurcation of a two-prey one-predator systemwith time delays, J. Nanchang Univ. (Engl. Tech. ), Vol. 30, No. 1, p.19–23, 2008. (in Chinese).
Google Scholar
[4]
S.Y. Li, Z.L. Xiong and R.G. Gu, A Class of Food Chain System with Stage Structure, Math. in Prac. and Theo., Vol. 38, No. 13, p.102–109, 2008. (in Chinese).
Google Scholar
[5]
S.J. Gao, Global Stability of Three-stage-structured Single-species Growth Model, J. Xinjiang Univ., Vol. 18, No. 12, p.154–158, 2001. (in Chinese).
Google Scholar
[6]
S.J. Gao, Models for single species with three life history stages and cannibalism, J. Biomath. Vol. 20, No. 4, p.385–391, (2005).
Google Scholar
[7]
S.J. Yang and B. Shi, Periodic solution for a three-stage-structured predator-prey system with time delay, J. Math. Anal. Appl. Vol. 341 No. 1, p.287–294, (2008).
DOI: 10.1016/j.jmaa.2007.10.025
Google Scholar
[8]
S.Y. Li and X.G. Xue, Hopf bifurcation in a three-stage-structured prey-predator system with predator density dependent, Comm. Comp. Info. Scie., Vol. 288, p.740–747, (2012).
DOI: 10.1007/978-3-642-31965-5_86
Google Scholar
[9]
J.K. Hale. Theory of Functional Differential Equations. Springer, New York, (1977).
Google Scholar
[10]
B.D. Hassard, N.D. Kazarinoff and Y.H. Wan. Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge, (1981).
Google Scholar
[11]
M.Y. Fu, A.W. Olbrot and M.P. Polis, Robust stability for time-delay systems: The edge theorem and graphical tests, IEEE Trans. Autom. Contr., Vol. 34, No. 8, p.813–820, (1989).
DOI: 10.1109/9.29423
Google Scholar