Orientation-Independent Tensor Voting Analysis

Article Preview

Abstract:

Tensor voting framework is an approach for perceptual organization. A tensor can provide more information than scalar or vector in image processing. However, the structure of tensor also makes it not unique but orientation dependent. In this paper, to quantify properly the intrinsic orientation-independent voting process, we proposed a new description of the tensor fields, which consists of three rotationally invariant quantities. Instead of coordinate transformation, this approach does not require tensor diagonalization or eigenvalue calculation. Therefore, our approach is not susceptible to potential artifacts induced during these number manipulations, meanwhile simplified the voting process at the same time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

3286-3292

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Guy and G. Medioni, Inferring Global Perceptual Contours from Local Features, " Int, l J. Computer Vision, vol. 20, no. 1/2, 1996, pp.113-133.

DOI: 10.1007/bf00144119

Google Scholar

[2] G. Medioni, M.S. Lee, and C.K. Tang, A Computational Framework for Feature Extraction and Segmentation,. Elsevier Science, 2000, pp.40-46.

Google Scholar

[3] P. Mordohai and G. Medioni, "Tensor Voting: A Perceptual Organization Approach to Computer Vision and Machine Learning. Morgan and Claypool Publishers, 2006, pp.24-26.

DOI: 10.1007/978-3-031-02242-5_2

Google Scholar

[4] P. Mordohai and G. Medioni, Dimensionality Estimation, Manifold Learning and Function Approximation Using Tensor Voting, J. Machine Learning Research, vol. 11, 2010, pp.411-450.

DOI: 10.1007/978-3-031-02242-5_5

Google Scholar

[5] M. Lee, G. Medioni, and P. Mordohai. Inference of segmented overlapping surfaces from binocular stereo. PAMI, vol. 24, no. 6, 2002, pp.824-837.

DOI: 10.1109/tpami.2002.1008388

Google Scholar

[6] D. D. Givone and R. P. Roesser  Minimization of multidimensional linear iterative circuits,  IEEE Trans. Comput.,  vol. 22,  no. 7,  1973, pp.673-678.

DOI: 10.1109/tc.1973.5009134

Google Scholar

[7] F. R. Chang and C. N. Chen  The generalized Cayley–Hamilton theorem for standard pencils,  Syst. Control Lett.,  vol. 18, 1992, pp.179-182.

DOI: 10.1016/0167-6911(92)90003-b

Google Scholar

[8] X. He, D. Cai, and P. Niyogi, Tensor subspace analysis, in Advances Neural Inform. Process. Syst., vol. 18, Vancouver, BC, Canada, Dec. 2006, pp.499-506.

Google Scholar

[9] K. Kong, X. Li, L. Wang, E. Teoh, J. Wang, and R. Venkateswarlu, Generalized 2-D principal component analysis, in Proc. IEEE Int. Joint Conf. Neural Netw, Montréal, Québec, Canada, vol. 1, 2005, pp.108-113.

DOI: 10.1109/ijcnn.2005.1555814

Google Scholar

[10] M. Descoteaux, et al., Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications, , Mag Res Med, vol. 56, 2006, pp.395-410.

DOI: 10.1002/mrm.20948

Google Scholar

[11] N. M. Smart and S. Barnett  The algebra of matrices in n-dimensional systems, ,  Math. Control Inf.,  vol. 6, 1989, pp.121-133.

Google Scholar

[12] G. Kindlmann, X. Tricoche, and C. -F. Westin. Delineating white matter structure in diffusion tensor MRI with anisotropy creases, Medical Image Analysis, vol 11, 2007, p.492–502.

DOI: 10.1016/j.media.2007.07.005

Google Scholar

[13] R. Moreno, M. A. Garcia, D. Puig, L. Pizarro, B. Burgeth and J. Weickert On Improving the Efficiency of Tensor Voting, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 99, 2011, p.2215 – 2228.

DOI: 10.1109/tpami.2011.23

Google Scholar

[14] J. Dauguet , S. Peled , V. Berezovskii , T. Delzescaux , S. K. Warfield , R. Born and C. -F. Westin  3D histological reconstruction of fiber tracts and direct comparison with diffusion tensor MRI tractography,  Proc. MICCAI 2006,  pp.109-116.

DOI: 10.1007/11866565_14

Google Scholar

[15] Granlund, Gösta H., and Hans Knutsson. Signal processing for computer vision. Kluwer Academic Pub, (1994).

Google Scholar