[1]
De Sa, V. R., and Ballard, D. H. Category learning through, multimodality sensing. Neural Computation, 1998, 10(5), 1097–1117.
DOI: 10.1162/089976698300017368
Google Scholar
[2]
Fleuret, F., and Brunet, E. DEA: an architecture for goal planning and classification. Neural Computation, 2000, 12(9), 1987–(2008).
DOI: 10.1162/089976600300015024
Google Scholar
[3]
Friedman, J. H. Exploratory projection pursuit. Journal of American Statistical Association, 1987, 82(397), 249–266.
DOI: 10.1080/01621459.1987.10478427
Google Scholar
[4]
Fukushima, K. Self-organization of shift-invariant receptive fields. Neural Networks, 1999, 12(6), 791–802.
DOI: 10.1016/s0893-6080(99)00039-8
Google Scholar
[5]
Higuchi, I., and Eguchi, S. The influence function of principal component analysis by self-organizing rule. Neural Computation, 1998, 10(6), 1435–1444.
DOI: 10.1162/089976698300017241
Google Scholar
[6]
Hyvarinen, A. Survey on independent component analysis. Neural Computing Surveys, 1999, 2, 94–128.
Google Scholar
[7]
Kohonen, T. The self-organizing map. Proceedings of the IEEE, 1990, 8, 1464–1480.
Google Scholar
[8]
Kohonen, T. Emergence of invariant-feature detectors in the adaptive-subspace SOM. Biological Cybernetics, 1996, 75, 281–291.
DOI: 10.1007/s004220050295
Google Scholar
[9]
Kohonen, T., Kaski, S., and Lappalainen, H. Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM. Neural Computation, 1997, 9(6), 1321–1344.
DOI: 10.1162/neco.1997.9.6.1321
Google Scholar
[10]
Lewicki, M. S., and Sejnowski, T. J. Learning overcomplete representations. Neural Computation, 2000, 12(2), 337–365.
DOI: 10.1162/089976600300015826
Google Scholar