[1]
Lin Chunfu, Wang Shengde. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 3(2): 464-471l.
Google Scholar
[2]
Huang Hanpang, Liu Yihuang. Fuzzy support vector machines for pattern recognition and data mining. International Journal of Fuzzy Systems, 2002, 4(3): 826−835.
Google Scholar
[3]
Bian Zhaoqi, Zhang Xuegong. Pattern Recognition[M]. Beijing: Tsinghua University Press, (1999).
Google Scholar
[4]
Zhe Du, Sanyang Liu, Xiaogang Qi. Fuzzy Support Vector Machine with New Membership Function [J]. Journal of System Simulation, 2009, 21( 7) : 1901-(1903).
Google Scholar
[5]
Jinlong An, ZhengOu Wang, Zhenping Ma. Fuzzy Support Vector Machine Based on Density [J]. Journal of Tianjin University, 2004, 37(6): 544-548.
Google Scholar
[6]
Xiang Zhang, Xiaoling Xiao, Guanyou Xu. Fuzzy Support Vector Machine Based on Affinity Among Samples [J]. Journal of Software, 2006, 17(5): 951-958.
DOI: 10.1360/jos170951
Google Scholar
[7]
Platt J C. Fast Training of support Vector Machines Using Sequential Minimal Optimization [M]. Cambridge, MA: MIT Press, 1999: 185- 208.
DOI: 10.7551/mitpress/1130.003.0016
Google Scholar
[8]
Keerthi S S, Shevade S K, Bhattaacharyya C, Murthy K R K. Improvements to Platt's SMO algorithm for SVM classifier design[J]. Neural Computation, 2001, 13( 3) : 637- 649.
DOI: 10.1162/089976601300014493
Google Scholar
[9]
Qi Wu, Rob Law. The complex fuzzy system forecasting model based on FSVM with triangular fuzzy number input and output[J]. Expert Systems with Applications, 2011, 38(10): 12085-12093.
DOI: 10.1016/j.eswa.2011.02.094
Google Scholar
[10]
Abu Sayeed Md, Prabir Bhattacharya, Sudhir P. Classification of Ultrasound Medical Images Using Distance Based Feature Selection and Fuzzy-SVM[J]. Springerlink, 2011, 6669(2011): 176-183.
DOI: 10.1007/978-3-642-21257-4_22
Google Scholar
[11]
Batuwita, R. Fuzzy Support Vector Machines for Class Imbalance Learning[J]. IEEE Transactions on Fuzzy Systems. 2011, 18(3): 558-571.
DOI: 10.1109/tfuzz.2010.2042721
Google Scholar