[1]
Shanjin LV, Yang Wang. An investigation of pulsed laser cutting of titanium alloy sheet. Opt Lasers Eng 2006; 44: 1067–77.
DOI: 10.1016/j.optlaseng.2005.09.003
Google Scholar
[2]
Tsai Chuwan-Huei, Chen Hong-Wen. Laser cutting of thick ceramic substrates by controlled fracture technique. J Mater Process Technol 2003; 136: 166–73.
Google Scholar
[3]
Yilbas BS, Rashid M. CO2 laser cutting of incoloy 800HT alloy and its quality assessment. Lasers Eng 2002; 12: 135–45.
DOI: 10.1080/0898150021000014092
Google Scholar
[4]
Almeida IA, de Rossi W, Lima MSF, Berretta JR, Ngueira GEC, Wetter NU, et al. Optimization of titanium cutting by factorial analysis of pulsed Nd: YAG laser parameters. J Mater Process Technol 2006; 179: 105–10.
DOI: 10.1016/j.jmatprotec.2006.03.107
Google Scholar
[5]
Yilbas BS, Hyder SJ, Sunar M. The Taguchi method for determining CO2 laser cut quality. J LaserAppl 1998; 10(2): 71–7.
DOI: 10.2351/1.521823
Google Scholar
[6]
Dubey AK, Yadava V. Robust parameter design and multi-objective optimiza- tion of laser beam cutting for aluminium alloy sheet. Int J Adv Manuf Technol 2008; 38: 268–77.
DOI: 10.1007/s00170-007-1105-x
Google Scholar
[7]
Ghany AK, Newishy M. Cutting of 1. 2mm thick austenitic stainless steel sheet using pulsed and CW Nd: YAG laser. Journal of Material Processing Technology 2005; 168: 438–47.
DOI: 10.1016/j.jmatprotec.2005.02.251
Google Scholar
[8]
Thawari G, Sarin Sundar JK, Sundararajan G, Joshi SV. Influence of process parameters during pulsed ND: YAG laser cutting of nickel-base superalloys. Journal of Materials Processing Technology 2005; 170: 229–39.
DOI: 10.1016/j.jmatprotec.2005.05.021
Google Scholar
[9]
Pradhan MK, Biswas CK. Neuro-fuzzy model and regression model a compar- ison study of MRR in electrical discharge machining of D2 tool steel. Int J Math Phys Eng Sci 2009; 3: 48–53.
Google Scholar
[10]
Sivarao, Brevern P, Tayeb NSM, Vengkatesh VC. Modeling, testing and experimental validation of laser machining micro quality response by artificial neural network. Int J Eng Technol 2009; 09: 161–6.
DOI: 10.5772/8612
Google Scholar
[11]
Syn CZ, Mokhtar M, Feng CJ, Manurung HPYupiter. Approach to prediction of laser cutting quality by employing fuzzy expert system. Expert Syst Appl 2011; 38: 7558–68.
DOI: 10.1016/j.eswa.2010.12.111
Google Scholar
[12]
WANG Xiao-peng. Pareto genetic algorithm for multi-objective optimization design. Systems Engineering and Electronics. Systems Engineering and Electronics 25(12) (2003), 1558-1561.
Google Scholar
[13]
H-J. Hao, J-Y. Xu,J. Li. Prediction of Laser Cutting Quality Based on Improved Pareto Genetic Algorithm. Lasers in Eng., 0: 1–14.
Google Scholar