A Performance Tool for Earth System Models Development

Article Preview

Abstract:

We present a performance tool for Earth system models development to aid in analyzing the performance of the climate modeling applications. It is difficult for existing tools to handle with the complex, coupled structure and the long execution time of models. Our performance tool implements rapid analysis based on statistical sampling and grouping aggregation the calling relationship and the actual computing resource consumption excluding waiting losses. Using this tool, we study an ocean model POP in short-term sampling and analyze its scaling bottleneck and acceleration trend. The measuring results of its entire execution prove our predictions on the scaling efficiencies.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

3814-3820

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Hill, C. DeLuca, V. Balaji, M. Suarez, and A. Da Silva, The architecture of the Earth System Modeling Framework, Computing in Science and Engineering, 6(1), p.18–28, (2004).

DOI: 10.1109/mcise.2004.1255817

Google Scholar

[2] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz, Stack trace analysis for large scale debugging, Parallel and Distributed Processing Symposium 2007(IPDPS 2007), IEEE International, Madison, p.1–10, (2007).

DOI: 10.1109/ipdps.2007.370254

Google Scholar

[3] N. R. Tallent, J. M. Mellor-Crummey, M. Franco, R. Landrum, and L. Adhianto, Scalable fine-grained call path tracing, " Proceedings of the international conference on Supercomputing, ICS , 11, ACM, New York, USA, pp.63-74, (2011).

DOI: 10.1145/1995896.1995908

Google Scholar

[4] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach, VAMPIR: Visualization and analysis of MPI resources, Supercomputer, 12(1): 69-80, (1996).

Google Scholar

[5] S. S. Shende and A. D. Malony, The TAU parallel performance system, International Journal of High Performance Computing Applications, 20(2): 287–311, (2006).

DOI: 10.1177/1094342006064482

Google Scholar

[6] A. D. Malony, S. Shende, A. Morris, S. Biersdor, W. Spear, K. Huck, and A. Nataraj, Evolution of a parallel performance system, Tools for High Performance Computing, Springer, Berlin Heidelberg, p.169–190, (2008).

DOI: 10.1007/978-3-540-68564-7_11

Google Scholar

[7] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, The Paradyn parallel performance measurement tool, Computer, IEEE Computer Society, 28(11): 37–46, (1995).

DOI: 10.1109/2.471178

Google Scholar

[8] N. R. Tallent and J. Mellor-Crummey, Effective performance measurement and analysis of multithreaded applications, Technical report, Rice University, August (2008).

Google Scholar

[9] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M. W. Fagan, and M. Krentel, Diagnosing performance bottlenecks in emerging petascale applications, In Proceedings of the Conference on High Performance Computing Networking, ACM, New York, USA, p.1–11, (2009).

DOI: 10.1145/1654059.1654111

Google Scholar

[10] Earth System Modeling Framework, http: /www. earthsystemmodeling. org/, (2011).

Google Scholar

[11] P. H. Worley, A. P. Craig, J. M. Dennis, A. A. Mirin, M. A. Taylor, and M. Vertenstein, Performance of the Community Earth System Model, " In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC , 11), ACM, Seatle, WA, USA, pp.1-11, (2011).

DOI: 10.1145/2063384.2063457

Google Scholar

[12] M. Blackmon, B. Boville, F. Bryan, P. Gent, J. Kiehl, G. Bonan, et al., The Community Climate System Model, Bulletin of the American Meteorological Society, American Meteorological Society, Boston, MA, 82(11): 2357–2376, (2001).

DOI: 10.1175/1520-0477(2001)082<2357:tccsm>2.3.co;2

Google Scholar

[13] V. Balaji, FMS: The GFDL Flexible Modelling System. http: /www. gfdl. noaa. gov/fms, (2004).

Google Scholar

[14] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, Scalable identification of load imbalance in parallel executions using call path profiles, " In Proceedings of 2010 International Conference for High Performance Computing, Networking, Storage and Analysis (SC , 10), ACM, New Orleans, LA, pp.1-11, (2010).

DOI: 10.1109/sc.2010.47

Google Scholar

[15] R. L. Henderson, Job scheduling under the portable batch system,. In Job Scheduling Strategies for Parallel Processing, Springer-Verlag, p.279–294, (1995).

DOI: 10.1007/3-540-60153-8_34

Google Scholar

[16] A.B. Yoo, M. A. Jette, and M. Grondona, SLURM: Simple Linux Utility for Resource Management, In Job Scheduling Strategies for Parallel Processing, SpringerVerlag, pp.44-60, (2003).

DOI: 10.1007/10968987_3

Google Scholar

[17] Intel Corporation. Intel VTune performance analyzer. http: /www. intel. com/software/products/vtune.

DOI: 10.1109/icisc.2018.8399107

Google Scholar

[18] S. L. Graham, P. B. Kessler, and M. K. McKusick, Gprof: A call graph execution profiler, " In Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction (SIGPLAN , 82), ACM Press, New York, NY, USA, p.120–126, (1982).

DOI: 10.1145/800230.806987

Google Scholar