An Optical Flow-Based PIG Method for Active Contour Tracking Initialization

Article Preview

Abstract:

In this paper, we propose a new optical flow-based Poisson inverse gradient (OFPIG) initialization method for active contour tracking. This method can automatically initialize the contour of moving target for consequent tracking. First, an optical flow based motion detection method is adopted to remove background information, and then a Poisson inverse gradient (PIG) initialization is applied to locate the target region. Finally, parametric active contour is used to evolve the correct target contour depending on the initialization precision. Experimental results have demonstrated its effectiveness and robustness.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

1311-1316

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kass, Michael, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models., International journal of computer vision 1. 4 (1988): 321-331.

DOI: 10.1007/bf00133570

Google Scholar

[2] Paragios, Nikos, and Rachid Deriche. Geodesic active regions for motion estimation and tracking., Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on. Vol. 1. IEEE, (1999).

DOI: 10.1109/iccv.1999.791292

Google Scholar

[3] Xingfei, Ge, and Tian Jie. An automatic active contour model for multiple objects., Pattern Recognition, 2002. Proceedings. 16th International Conference on. Vol. 2. IEEE, (2002).

DOI: 10.1109/icpr.2002.1048444

Google Scholar

[4] Li, Chunming, Jundong Liu, and Martin D. Fox. Segmentation of external force field for automatic initialization and splitting of snakes., Pattern Recognition 38. 11 (2005): 1947-(1960).

DOI: 10.1016/j.patcog.2004.12.015

Google Scholar

[5] Chung, Chih-Yuan, and Homer H. Chen. Video object extraction via MRF-based contour tracking., Circuits and Systems for Video Technology, IEEE Transactions on 20. 1 (2010): 149-155.

DOI: 10.1109/tcsvt.2009.2026823

Google Scholar

[6] Chen, Qiang, et al. Two-stage object tracking method based on kernel and active contour., Circuits and Systems for Video Technology, IEEE Transactions on 20. 4 (2010): 605-609.

DOI: 10.1109/tcsvt.2010.2041819

Google Scholar

[7] Javed, Omar, Saad Ali, and Mubarak Shah. Online detection and classification of moving objects using progressively improving detectors., Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE, (2005).

DOI: 10.1109/cvpr.2005.259

Google Scholar

[8] Heikkila, Marko, and Matti Pietikainen. A texture-based method for modeling the background and detecting moving objects., Pattern Analysis and Machine Intelligence, IEEE Transactions on 28. 4 (2006): 657-662.

DOI: 10.1109/tpami.2006.68

Google Scholar

[9] Panin, Giorgio, Alexander Ladikos, and Alois Knoll. An efficient and robust real-time contour tracking system. " Computer Vision Systems, 2006 ICVS, 06. IEEE International Conference on. IEEE, (2006).

DOI: 10.1109/icvs.2006.13

Google Scholar

[10] Li, Bing, and Scott T. Acton. Automatic active model initialization via Poisson inverse gradient., Image Processing, IEEE Transactions on 17. 8 (2008): 1406-1420.

DOI: 10.1109/tip.2008.925375

Google Scholar

[11] Horn B, Schunck B. Determining optical flow. Artificial Intelligence 1981; 17(1–3): 185–203.

DOI: 10.1016/0004-3702(81)90024-2

Google Scholar

[12] Shin, Jeongho, et al. Optical flow-based real-time object tracking using non-prior training active feature model., Real-Time Imaging 11. 3 (2005): 204-218.

DOI: 10.1016/j.rti.2005.03.006

Google Scholar

[13] http: /www. anc. ed. ac. uk/demos/tracker/pets2001. html.

Google Scholar