Improved Self-Adaptive Image Histogram Equalization Algorithm

Article Preview

Abstract:

Histogram equalization (HE) algorithm is wildly used method in image processing of contrast adjustment using images histogram. This method is useful in images with backgrounds and foreground that are both bright or both dark. But the performance of HE is not satisfactory to images with backgrounds and foregrounds that are both bright or both dark. To deal with the above problem, [ gives an improved histogram equalization algorithm named self-adaptive image histogram equalization (SIHE) algorithm. Its main idea is to extend the gray level of the image which firstly be processed by the classical histogram equalization algorithm. This paper gives detailed introduction to SIHE and analyzes the shortage of it, then give an improved version of SIHE named ISIHE, finally do experiments to show the performance of our algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

1495-1500

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhang, X. Liu and H. F. Li, Self-adaptive image histogram equalization algorithm, Journal of Zhejiang University(Engineering Science), vol. 41, n. 4, pp.630-633, (2007).

Google Scholar

[2] K. Zuiderveld, Contrast Limited Adaptive Histogram Equalization, P. Heckbert: Graphics Gems IV, (Year of Publication: 1994 ISBN: 0-12-336155-9).

DOI: 10.1016/b978-0-12-336156-1.50061-6

Google Scholar

[3] R. Kimmel, D. Shaked, M. Elad, et al, Space-dependent color gamut mapping: a variational approach, IEEE Transaction on Image Processing, vol. 14, n. 6, pp.796-803, (2005).

DOI: 10.1109/tip.2005.847299

Google Scholar

[4] Lixin Zhu, Xiaoli Ouyang, Deshen Xia, Fingerprint image enhancement by pseudo-linear directional diffusion PDE, Pattern Recognition and Artificial Intelligence, vol. 19, n. 6, pp.806-811, (2006).

Google Scholar

[5] S. S. Agaian, B. Silver, K. A. Panetta, Transform coefficient histogram based image enhancement using contrast entropy, IEEE Trans Image Processing, vol. 169, n. 30, pp.741-758, (2007).

DOI: 10.1109/tip.2006.888338

Google Scholar

[6] T. Arici, S. Dikbas, Y. Altunbasak, A histogram modification framework and its application for image contrast enhancement, IEEE Trans Image Processing, vol. 18, n. 9, pp.1921-1935, (2009).

DOI: 10.1109/tip.2009.2021548

Google Scholar

[7] Y. T. Kim, Contrast enhancement using brightness preserving bi-histogram equalization, Consumer Electronics, IEEE Transactions, vol. 43, n. 1, pp.1-8, (1997).

DOI: 10.1109/30.580378

Google Scholar

[8] M. Abdullah-Al-Wadud, M. H. Kabir, M. A. A. Dewan, et al, A dynamic histogram equalization for image contrast enhancement, IEEE Transactions on Consumer Electronics, vol. 53, n. 2, pp.593-600, (2007).

DOI: 10.1109/tce.2007.381734

Google Scholar

[9] A. De La Torre, A. M. Peinado, J. C. Segura, et al. Histogram equalization of speech representation for robust speech recognition, IEEE Transactions on Speech and Audio Processing, vol. 13, n. 3, pp.355-366, (2005).

DOI: 10.1109/tsa.2005.845805

Google Scholar

[10] S. D. Chen, A. R. Ramli, Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation, IEEE Transactions on Consumer Electronics, vol. 49, n. 4, pp.1301-1309, (2003).

DOI: 10.1109/tce.2003.1261233

Google Scholar