[1]
S. Mika, G. Rätsch, J. Weston, B. Schölkopf, K. R. Müller, Fisher Discriminant Analysis with Kernels, Proceeding of IEEE Neural Networks for Signal Processing Workshop, pp.41-48, (1999).
DOI: 10.1109/nnsp.1999.788121
Google Scholar
[2]
W. Huang and H. Yin, On nonlinear dimensionality reduction for face recognition, Image Vision Computing, vol. 30, pp.355-366, (2012).
DOI: 10.1016/j.imavis.2012.03.004
Google Scholar
[3]
G. Baudat, F. Anouar, Generalized discriminant analysis using a kernel approach, Neural Computation, vol. 12, pp.2385-2404, (2000).
DOI: 10.1162/089976600300014980
Google Scholar
[4]
Bach, F.R., Jordan, M.I., Kernel Independent Component Analysis. Journal of Machine Learning Research, 3, (2002), 1-48.
Google Scholar
[5]
W. J. Zeng, X. L. Li, X. D. Zhang, and E. Cheng, Kernel-based nonlinear discriminant analysis using minimum squared errors criterion for multiclass and undersampled problems, Signal Processing, vol. 90, pp.2333-2343, (2010).
DOI: 10.1016/j.sigpro.2009.06.002
Google Scholar
[6]
D. Cai, X. F. He and J. W. Han, Speed Up Kernel Discriminant Analysis, Int. J. Very Large Data Bases, vol. 20, pp.21-33, (2011).
Google Scholar
[7]
P. Baggenstoss, Class-Specific Feature Sets in Classification, IEEE Trans. Signal Processing, vol. 47, pp.3428-3432, (1999).
DOI: 10.1109/78.806092
Google Scholar
[8]
G. Goudelis, S. Zafeiriou, A. Tefas, I. Pitas, Class-Specific Kernel Discriminant Analysis for Face Verification, IEEE Trans. Information Forensics and Security, vol. 2, p.570–587, (2007).
DOI: 10.1109/tifs.2007.902915
Google Scholar
[9]
X. He, S. Yan, Y. Hu, P. Niyogi and H. Zhang, Face Recognition Using Laplacianfaces, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, pp.328-340, (2005).
DOI: 10.1109/tpami.2005.55
Google Scholar
[10]
M. Sugiyama, Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis, Journal of Machine Learning Research, vol. 8, pp.1027-1061, (2007).
Google Scholar
[11]
X. Tao, J. Ye, V. Cherkassky, Kernel Uncorrelated and Orthogonal Discriminant Analysis: A Unified Approach, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.125-131, (2006).
DOI: 10.1109/cvpr.2006.161
Google Scholar
[12]
Z. Liang, P. Shi, Uncorrelated Discriminant Vectors Using a Kernel Method, Pattern Recognition, vol. 38, pp.307-310, (2005).
DOI: 10.1016/j.patcog.2004.06.006
Google Scholar
[13]
X. Y. Jing, S. Li, Y. F. Yao, L. S. Bian and J. Y. Yang, Kernel Uncorrelated Adjacent-class Discriminant Analysis, Int. Conf. Pattern Recognition, pp.706-709, (2010).
DOI: 10.1109/icpr.2010.178
Google Scholar
[14]
W. M. Zheng, L. Zhao, C. Zou, Foley-Sammon optimal discriminant vectors using kernel approach, IEEE Trans Neural Networks, vol. 16, pp.1-9, (2005).
DOI: 10.1109/tnn.2004.836239
Google Scholar
[15]
A. M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report, (1998).
Google Scholar
[16]
W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, D. Zhao, The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations, IEEE Trans. System Man and Cybernetics, vol. A38, pp.149-161, (2008).
DOI: 10.1109/tsmca.2007.909557
Google Scholar