A New Kernel Orthogonal Projection Analysis Approach for Face Recognition

Article Preview

Abstract:

In the field of face recognition, how to extract effective nonlinear discriminative features is an important research topic. In this paper, we propose a new kernel orthogonal projection analysis approach. We obtain the optimal nonlinear projective vector which can differentiate one class and its adjacent classes, by using the Fisher criterion and constructing the specific between-class and within-class scatter matrices in kernel space. In addition, to eliminate the redundancy among projective vectors, our approach makes every projective vector satisfy locally orthogonal constraints by using the corresponding class and part of its most adjacent classes. Experimental results on the public AR and CAS-PEAL face databases demonstrate that the proposed approach outperforms several representative nonlinear projection analysis methods.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

1627-1632

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, K. R. Müller, Fisher Discriminant Analysis with Kernels, Proceeding of IEEE Neural Networks for Signal Processing Workshop, pp.41-48, (1999).

DOI: 10.1109/nnsp.1999.788121

Google Scholar

[2] W. Huang and H. Yin, On nonlinear dimensionality reduction for face recognition, Image Vision Computing, vol. 30, pp.355-366, (2012).

DOI: 10.1016/j.imavis.2012.03.004

Google Scholar

[3] G. Baudat, F. Anouar, Generalized discriminant analysis using a kernel approach, Neural Computation, vol. 12, pp.2385-2404, (2000).

DOI: 10.1162/089976600300014980

Google Scholar

[4] Bach, F.R., Jordan, M.I., Kernel Independent Component Analysis. Journal of Machine Learning Research, 3, (2002), 1-48.

Google Scholar

[5] W. J. Zeng, X. L. Li, X. D. Zhang, and E. Cheng, Kernel-based nonlinear discriminant analysis using minimum squared errors criterion for multiclass and undersampled problems, Signal Processing, vol. 90, pp.2333-2343, (2010).

DOI: 10.1016/j.sigpro.2009.06.002

Google Scholar

[6] D. Cai, X. F. He and J. W. Han, Speed Up Kernel Discriminant Analysis, Int. J. Very Large Data Bases, vol. 20, pp.21-33, (2011).

Google Scholar

[7] P. Baggenstoss, Class-Specific Feature Sets in Classification, IEEE Trans. Signal Processing, vol. 47, pp.3428-3432, (1999).

DOI: 10.1109/78.806092

Google Scholar

[8] G. Goudelis, S. Zafeiriou, A. Tefas, I. Pitas, Class-Specific Kernel Discriminant Analysis for Face Verification, IEEE Trans. Information Forensics and Security, vol. 2, p.570–587, (2007).

DOI: 10.1109/tifs.2007.902915

Google Scholar

[9] X. He, S. Yan, Y. Hu, P. Niyogi and H. Zhang, Face Recognition Using Laplacianfaces, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, pp.328-340, (2005).

DOI: 10.1109/tpami.2005.55

Google Scholar

[10] M. Sugiyama, Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis, Journal of Machine Learning Research, vol. 8, pp.1027-1061, (2007).

Google Scholar

[11] X. Tao, J. Ye, V. Cherkassky, Kernel Uncorrelated and Orthogonal Discriminant Analysis: A Unified Approach, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.125-131, (2006).

DOI: 10.1109/cvpr.2006.161

Google Scholar

[12] Z. Liang, P. Shi, Uncorrelated Discriminant Vectors Using a Kernel Method, Pattern Recognition, vol. 38, pp.307-310, (2005).

DOI: 10.1016/j.patcog.2004.06.006

Google Scholar

[13] X. Y. Jing, S. Li, Y. F. Yao, L. S. Bian and J. Y. Yang, Kernel Uncorrelated Adjacent-class Discriminant Analysis, Int. Conf. Pattern Recognition, pp.706-709, (2010).

DOI: 10.1109/icpr.2010.178

Google Scholar

[14] W. M. Zheng, L. Zhao, C. Zou, Foley-Sammon optimal discriminant vectors using kernel approach, IEEE Trans Neural Networks, vol. 16, pp.1-9, (2005).

DOI: 10.1109/tnn.2004.836239

Google Scholar

[15] A. M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report, (1998).

Google Scholar

[16] W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, D. Zhao, The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations, IEEE Trans. System Man and Cybernetics, vol. A38, pp.149-161, (2008).

DOI: 10.1109/tsmca.2007.909557

Google Scholar