[1]
N.E. Dyakevich, Existence, uniqueness, and quenching properties of solutions for degenerate semilinear parabolic problems with second boundary conditions, J. Math. Anal. Appl. 338, (2008), 892-901.
DOI: 10.1016/j.jmaa.2007.05.077
Google Scholar
[2]
M.S. Floater, Blow-up at the boundary for degenerate semilinear parabolic equations, Archive for Rational Mechanics and Analysis 114(1)(1991), 57-77.
DOI: 10.1007/bf00375685
Google Scholar
[3]
M.H. Protter, H.F. Weinberger. Maximum Principle in Differential Equations, Springer. New York, (1984).
Google Scholar
[4]
C.Y. Chan and H.T. Liu, Global existence of solutions for degenerate semilinear parabolic problems, Nonlinear Analysis 34(1998), 617-628.
DOI: 10.1016/s0362-546x(97)00599-3
Google Scholar
[5]
C.Y. Chan and W.Y. Chan, Complete blow-up of solutions for degenerate semilinear parabolic first initial-boundary value problems, Appl. Math. Comput. 177(2006), 777-784.
DOI: 10.1016/j.amc.2005.11.093
Google Scholar
[6]
H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, second ed., Oxford University Press, Oxford, Great Britain, 1959, pp.9-10.
Google Scholar
[7]
C. Y. Chan, P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl. Math. 55(1997) 51-56.
DOI: 10.1090/qam/1433751
Google Scholar
[8]
H. Ockendon, Channel flow with temperature-dependent viscosity and internal viscous dissipation, J. Fluid Mech. 93(1979) 737-746.
DOI: 10.1017/s0022112079002007
Google Scholar