[1]
H. B1um, A transformation for extracting new descriptors of shape, MIT Press, pp.362-380, (1967).
Google Scholar
[2]
ZHANG Guo-dong, HAN Jia-chi, Skeleton pruning algorithm based on fuzzy distance transform, Journal of Shenyang Aerospace University, vol. 29(2), pp.64-69, (2012).
Google Scholar
[3]
Nicu D. Cornea, Deborah Silver, Member, IEEE, and Patrick Min, Curve-Skeleton Properties, Applications, and Algorithms, Visualization and Computer graphics, vol. 13(3), pp.530-548, (2007).
DOI: 10.1109/tvcg.2007.1002
Google Scholar
[4]
F Leymarie, MD Levine, Simulating the Grassfire Transform Using an Active Contour Model, Pattern Analysis and Machine Intelligence, vol. 14(1), pp.56-75, (1992).
DOI: 10.1109/34.107013
Google Scholar
[5]
Ron Kimmel, Doron Shaked, and Nahum Kiryati, Skeletonization via distance maps and level sets, Computer vision and image understanding, vol. 62(3), pp.382-391, (1995).
DOI: 10.1006/cviu.1995.1062
Google Scholar
[6]
J.W. Brandt and V.R. Alazi, Continuous Skeleton Computation by Voronoi Diagram, CVGIP: Image Understanding, vol. 55, pp.329-338, (1992).
DOI: 10.1016/1049-9660(92)90030-7
Google Scholar
[7]
R. Ogniewicz, A Multiscale MAT from Voronoi Diagrams: The Skeleton-Space and Its Application to Shape Description and Decomposition, Aspects of Visual Form Processing, World Scientific, 1994, p.430.
Google Scholar
[8]
T. Culver, J. Keyser, and D. Manocha, Exact Computation of the Medial Axis of a Polyhedron, Computer Aided Geometric Design, vol. 21(1), pp.65-98, (2004).
DOI: 10.1016/j.cagd.2003.07.008
Google Scholar
[9]
J.M. Reddy and G.M. Turkiyyah, Computation of 3D Skeletons Using a Generalized Delaunay Triangulation Technique, Computer- Aided Design, vol. 27(9), pp.677-694, (1995).
DOI: 10.1016/0010-4485(94)00025-9
Google Scholar
[10]
N. Ahuja and J. Chuang. Shape Representation Using a Generalized Potential Field Model, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19(2), pp.169-176, (1997).
DOI: 10.1109/34.574801
Google Scholar
[11]
J. Chuang, C. Tsai, and M. -C. Ko. Skeletonization of Three- Dimensional Object Using Generalized Potential Field, IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(11): 1241.
DOI: 10.1109/34.888709
Google Scholar
[12]
L Lam, SW Lee, CY Suen, Thinning methodologies-a comprehensive survey, IEEE Transactions On Pattern Analysis And Machine Intelligence, vol. 14(9), pp.869-885, (1992).
DOI: 10.1109/34.161346
Google Scholar
[13]
S. X. HU, Yan-Ming Xiong, Liao, M.Z.W. Tang, Y. Y, Skeletonization of ribbon-like shapes based on local minimum modules of wavelet transform, Wavelet Analysis and Pattern Recognition, 2007, pp.1247-1251.
DOI: 10.1109/icwapr.2007.4421625
Google Scholar
[14]
Wang Song-wei, LI Yan-jun, Zhang Ke, Wang Zheng, Fast target skeleton extraction algorithm, Infrared and Laser Engineering, vol. 38(4), pp.731-736, (2009).
Google Scholar
[15]
Ugo Montanari, Continuous Skeletons from Digitized Images, Journal of the ACM (JACM), vol. 16(4), pp.534-549, (1969).
DOI: 10.1145/321541.321543
Google Scholar
[16]
Xiang Bai and Longin Jan Latecki, Path Similarity Skeleton Graph Matching, Pattern Analysis and Machine Intelligence, vol. 30(7), pp.1282-1292, (2008).
DOI: 10.1109/tpami.2007.70769
Google Scholar
[17]
Freek Reinders, Melvin E.D. Jacobson, and Frits H. Post, Skeleton Graph Generation for Feature Shape Description, Proc. Data Visualization, (2000).
DOI: 10.1007/978-3-7091-6783-0_8
Google Scholar
[18]
Siyu Guo, Qiu Tang, Optimization of the bwmorph Function in the MATLAB Image Processing Toolbox for Binary Skeleton Computation, Computational Intelligence and Natural Computing, 2009, pp.273-276.
DOI: 10.1109/cinc.2009.96
Google Scholar
[19]
Patrick Taillandier, Duc-An Vo, Edouard Amouroux, Alexis Drogoul, GAMA: A Simulation Platform That Integrates Geographical Information Data, Agent-Based Modeling and Multi-scale Control, Principles and Practice of Multi-Agent Systems, vol. 7057, pp.242-258, (2012).
DOI: 10.1007/978-3-642-25920-3_17
Google Scholar