Schur D-Stability of Linear Grey Discrete Dynamic Systems

Article Preview

Abstract:

In this paper, the Schur D-stability problem for a class of linear grey discrete dynamic systems is studied in terms of the matrix eigenvalues theory and spectral radius approach. Several necessary and sufficient conditions and some sufficient conditions are obtained which can guarantee the Schur D-stability of linear grey discrete dynamic systems. The equivalence relation between the Schur D-stability and Schur stability of linear grey discrete dynamic systems is established.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

2254-2257

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen Jufang: Stability of Trivial Solution on Nonliner Gray Discrete dynamic System, [J]. Acta Mathematicae Applicatae sinica(in Chinese), Vol. 18, No. 1 , pp.123-128(1995).

Google Scholar

[2] Zhou Zongfu and Zheng Zuma: Stability for Nonliner Gray Discrete Time Systems with Time-Delay[J]. Acta Mathematicae Applicatae sinica(in Chinese), Vol. 27, No. 2, pp.371-374 (2004).

Google Scholar

[3] Zhou Chao-shun and Deng Ju-long: Stability Analysis of Gray Discrete-Time Systems[J]. IEEE Trans. utomat. Contr., Vol. 34, No. 2, pp.173-175(1989).

DOI: 10.1109/9.21090

Google Scholar

[4] Peng Xiaolin and Luo Xiao: The algebraic Criteria for the Stability and Instability of Grey Discretic Dynamic System[J], Mathematica Applicate(in Chinese), Vol. 4 No. 2, pp.76-81(1991).

Google Scholar

[5] Jinfang Han, Jiqing Qiu and Qingyin Wang: On Robust Stability of Grey Discrete Dynamic Systems[J]. Advances in Systems Science and Applications(USA). No. 3, pp.337-340(2004).

Google Scholar

[6] Huang Tingzhu, Cheng Xiaoyu and Pu Heping: The Stability of Grey Discrete Systems"[J]. Control Theory and Applications(in Chinese), Vol. 16, No. 2, pp.244-247(1999).

Google Scholar

[7] Han Jinfang , Wang Qingyin and Li Yongwei: Simple Criteria for Stability and Instability of Discrete Dynamic Systems[J]. Systems Enginering and Electronics(in Chinese), Vol. 26, No. 9, pp.1254-1256(2004).

Google Scholar

[8] Jinfang Han, Jiqin Peng and Jiqing Qiu: New Sufficient Criteria for Stability of Nonlinear Gray Discrete Dynamic Systems[C]. Proc. of the 33nd Annual Conference of the IEEE Industrial Electronics Socie, pp.610-613. Nov. 5-8, 2007, Taipei, Taiwan.

DOI: 10.1109/iecon.2007.4460067

Google Scholar

[9] Deng Julong, Zhou Chaoshun: Sufficient Conditions For the Stability of a Class of Inter-Connected Dynamic Systems[J]. Systems & Control Letters, No. 2, pp.105-108(1986).

DOI: 10.1016/0167-6911(86)90015-0

Google Scholar

[10] Chaoshun Zhou, Julong Deng: The Stability of Grey Linear Systems[J]. Int. J. Control, Vol. 43, No. 1, pp.313-320(1986).

Google Scholar

[11] Julong Deng: Control Problems of Grey Systems [J]. Systems & Control Letters, No. 5, pp.288-294(1982).

Google Scholar

[12] Yang M. S, Liu P.L.: On New Sufficient Conditions for the Stability of Grey Linear Systems[J]. J. of The Chinese Grey System Association, Vol. 2, No. 3, pp.23-30(1999).

Google Scholar

[13] Tze-Li Kang, Ching-Chang Lin: On New Sufficient Conditions for the Stability of Grey Linear Systems[J]. The Journal of Grey System, Vol. 12, No. 2, pp.165-172(2000).

Google Scholar

[14] Fleming, et al.: On Schur D-stable Matrices[J], Linear Alg. Appl., Vol. 279, No. 1-3, pp.39-50 (1998).

Google Scholar

[15] R Yu Li: Robustness of D-Stability for Linear Systems[J] Acta Automatica Sinica(in Chinese), Vol. 27, No. 6, pp.860-862( 2001).

Google Scholar

[16] Hu Gang and Xie xiang-Sheng: Robust Control for Uncertain Discrete-Time Singular Systems with D-Stability[J], Acta Automatica Sinica(in Chinese), Vol. 29, No. 1, pp.142-147(2003).

Google Scholar

[17] Te-Jen Su and Wen-Jye Shyr: Robust D-Stability for Linear Uncertain Discrete Time-Delay Systems[J], IEEE Transactions on Automatic Control, Vol. 39, No. 2, pp.425-428(19940.

DOI: 10.1109/9.272350

Google Scholar

[18] Didier Henrion, et al.: D-Stability of Polynomial Matrices, Int. J. Control, Vol. 74, No. 8, pp.845-856(2001).

Google Scholar

[19] Weijie Mao, Xu Wang: LMI Conditions for Quadratic and Robust D-stability of Interval Systems[J], Journal of Control Theory and Applications, (2), pp.187-192(2006).

DOI: 10.1007/s11768-006-5094-3

Google Scholar