Off-Axis Digital Holographic Reconstruction Based on the Spatial Filtering of the Hologram Illuminated with the Reference Wave

Article Preview

Abstract:

In order to eliminate the zero-order and conjugate image in off-axis digital holography, a new method based on the spatial filtering of the hologram illuminated with the reference (written as RIh) wave is proposed. By using RIh and the low-pass filter to do the convolution operation, the real image of the object without the zero-order and conjugate image is directly obtained. Simultaneously, the real image always appears in the center of the reconstructed image plane. The spectrum characteristic of RIh is analyzed. A comparative analysis of the spectrum characteristics of the hologram and RIh is discussed. The theoretical and experiment results show that: this method requires only one hologram, and do once Fourier transform. The process of designing filtering window is simple and convenient.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

502-506

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Goodman, R. W. Lawrence. Digital image formation from electronically detected holograms [J]. Applied Physics Letter. 1967(11) 77-79.

DOI: 10.1063/1.1755043

Google Scholar

[2] Ichirou Yamaguchi, Jun-ichi Kato, Sohgo Ohta. Surface shape measurement by phase-shifting digital holography [J]. Optical Review. 2001(8) 85-89.

DOI: 10.1007/s10043-001-0085-6

Google Scholar

[3] Peizhen Qiu, Hui Wang, Hongzhen Jin, Yong Li, Yile Shi. Study on the simplified phase-shifting digital holographic microscopy [J]. Optik. 2010(121) 1251-1256.

DOI: 10.1016/j.ijleo.2009.01.005

Google Scholar

[4] S. Murata, N. Yasuda. Potential of digital holography in particle measurement [J]. Optics and Laser Technology. 2000(32) 567-574.

DOI: 10.1016/s0030-3992(00)00088-8

Google Scholar

[5] U. Schnars, W. Juptner. Direct recording of holograms by a CCD target and numerical reconstruction [J]. Applied Optics. 1994(33) 179-181.

DOI: 10.1364/ao.33.000179

Google Scholar

[6] Zhang Yimo, Lü Qieni, Ge Baozhen. Elimination of zero-order diffraction in digital off-axis holography [J]. Optics Communication. 2004(240) 261-267.

DOI: 10.1016/j.optcom.2004.06.040

Google Scholar

[7] I. Yamaguchi, T. Zhang. Phase-shifting digital holography [J]. Optics Letter. 1997(22) 1268-1270.

Google Scholar

[8] C. Liu, L. Li, Y. Li, X. Cheng, J. Zhu. Digital holography free of zero-order diffraction and conjugate images [J]. Acta Optica. Sinca. 2002(22) 427-431. (in Chinese).

Google Scholar

[9] Michael Liebling, Thierry Blu, Michael Unser. Complex-wave retrieval from a single off-axis hologram [J]. Journal of the Optical Society of America A. 2004(21) 367-377.

DOI: 10.1364/josaa.21.000367

Google Scholar

[10] Nicolas Pavillon, Chandra Sekhar Seelamantula, Jonas Kühn. Suppression of the zero-order term in off-axis digital holography through nonlinear filtering [J]. Applied Optics. 2009(48) H186-H189.

DOI: 10.1364/ao.48.00h186

Google Scholar

[11] Junchang Li, Zujie Peng, Patrice Tankam, Qinghe Song, Pascal Picart. Digital holographic reconstruction of a local object field using an adjustable magnification [J]. Journal of the Optical Society of America A. 2011(28) 1291-1296.

DOI: 10.1364/josaa.28.001291

Google Scholar

[12] G. L. Chen, C. Y. Lin, M. K. Kuo, C. C. Chang. Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram [J]. Applied Physics B. 2008(90) 527-532.

DOI: 10.1007/s00340-007-2910-5

Google Scholar

[13] Bichuan Shen, C. H. Chen. Application of auto-focus algorithms in holographic reconstruction [C]. Proc. of SPIE. 2009(7498) 74984G-1-74984G-6.

Google Scholar