[1]
M. Bermdez, P. Iglesias, A. E. Jimnez, et al. Influence of sliding frequency on reciprocating wear of mold steel with different microstructures . Wear. 267(2009)1784-1790.
DOI: 10.1016/j.wear.2008.12.025
Google Scholar
[2]
C.H. Zhang, S. Zhang, C.Y. Li, et al. Laser cladding stellite X-40 Co-based alloy on hot die steel. Transactions of the China Welding Institution, 26(2005)17-20.
Google Scholar
[3]
H. Wang, C. Cui, J. Zhou. Microstructure and properties of cobalt-based alloy coating on tool steel surface prepared by laser cladding. Journal of Jilin University (Engineering and Technology Edition). 40(2010)1000-1004.
Google Scholar
[4]
S. Yang, W. Zhang, F. Li, et al. Investigation on laser cladded nano-Y2O3 and cobalt based composite coating. Transactions of the China Welding Institution. 30(2009)79-82.
Google Scholar
[5]
D. Wolfem, J. Singh, J. Senderson, et al. Laser-clad composite coatings. Advanced Materials and Processes. 158(2000)41–44.
Google Scholar
[6]
J. Tuominen, P. Vuorsito, T. Mantyla, et al. Microstructure and corrosion behavior of high power diode laser deposited Inconel 625 coatings. Journal of Laser Applications. 15(2003)55–61.
DOI: 10.2351/1.1536652
Google Scholar
[7]
J. Tuominen, M. Honkanen, J. Hovikorpi, et al. Corrosion resistant nickel superalloy coatings laser-clad with a 6kW highpower diode laser (HPDL). First International Symposium on High Power Laser Macroprocessing. 4831(2003)59–64.
DOI: 10.1117/12.497958
Google Scholar
[8]
C. Paul, H. Alemohammad, E. Toyserkani, et al. Cladding of WC-12Co on low carbon steel using a pulsed Nd: YAG laser. Materials Science and Engineering A . 464(2007)170–176.
DOI: 10.1016/j.msea.2007.01.132
Google Scholar
[9]
C. Navas, A. Conde, B. J. Fernndez, et al. Laser coatings to improve wear resistance of mould steel. Surface and Coatings Technology. 194(2005)136-142.
DOI: 10.1016/j.surfcoat.2004.05.002
Google Scholar
[10]
D. Firrao, P. Matteis, G. Scavino, et al. Relationships between tensile and fracture mechanics properties and fatigue properties of large plastic mould steel blocks. Materials Science and Engineering A. 468-470(2007)193-200.
DOI: 10.1016/j.msea.2006.07.166
Google Scholar
[11]
C. Gologlu, N. Sakarya. The effects of cutter path strategies on surface roughness of pocket milling of 1. 2738 steel based on Taguchi method. Journal of Materials Processing Technology. 206(2008)7-15.
DOI: 10.1016/j.jmatprotec.2007.11.300
Google Scholar
[12]
S.H. Si, X.M. Yuan, K. Xu, et al. Effect of B4C particleson microstructure andwear resistance of Co-based alloy laser cladding. Transactions of the China Welding Institution, 25(2004)61-64.
Google Scholar
[13]
Y.Z. He, S.H. Si, K. Xu, et al. Effect of Cr2C3particles on microstructure and corrosion-wear resistance of laser cladding Co-based alloycoating. China Journal of Laser, 31(2004)1143-1148.
Google Scholar
[14]
M.X. Li, Y.Z. He, G.X. Sun, Microstructure of laser cladding Co-based alloy on Ni-based superalloy. Transactions of the China Welding Institution, 23(2002)17-20.
Google Scholar
[15]
P. Zhang, J.P. Yuan, L. Sun, et al. Effect of molybdenum on crack sensibilities of laser cladded NiCrBSi alloy coatings. Transactions of the China Welding Institution, 30(2009)68-70.
Google Scholar
[16]
S. Liu. Research on Microstructure and Properties of In-situ Synthesized Metal Ceramic Composite Coating by Laser Cladding. Dalian University of Technology Press, Dalian (2005).
Google Scholar
[17]
H.Q. Hu, Metal solidification principle. Mechanical Industry Press, Beijing (2000).
Google Scholar
[18]
W. P. Zhang, S. Liu, Y. T. Ma, Strengthening Mechanism of Particle Reinforced Metal Matrix Composite Coating by Laser Cladding , Transactions of Materials and Heat Treatment, 26(2005)70-73.
Google Scholar