A Review of Mathematical Models for Performance Analysis of Hybrid Solar Photovoltaic - Thermal (PV/T) Air Heating Systems

Article Preview

Abstract:

In recent years, many researches are being carried out on the integration of solar thermal systems with solar photovoltaic modules in many countries for heat generation along with electricity generation. The electrical energy generated by the solar PV modules is utilized for the operation of fan. The hybrid solar photovoltaic - Thermal (PV/T) technology provides an opportunity to enhance the electrical and thermal performances. This paper deals with analysis of various parameters which affect the electrical and thermal performances of different types of hybrid solar photovoltaic - Thermal (PV/T) air heating systems. These systems deliver more useful energy per unit area of the heater than that of individual solar PV and solar thermal systems and can be used for preheating the air for many applications such as drying of agricultural products, space heating and industrial process heating. The performance comparisons among the various models reveal that the model III in which the air flows above and below the absorber plate is most suitable for converting the solar energy into high quality electrical energy and low quality heat energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-39

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sunil Chamoli, Ranchan Chauhan, NS. Takur, JS. Saini, A review of the performance of double pass solar air heater, Renewable and Sustainable Energy Reviews 2010; 16: 481 – 492.

DOI: 10.1016/j.rser.2011.08.012

Google Scholar

[2] Rene Tcinda, A review of the mathematical models for predicting solar air heater systems; Renewable and Sustainable Energy Reviews 2009; 13; 1734 – 59.

DOI: 10.1016/j.rser.2009.01.008

Google Scholar

[3] K. Branker, JM. Pearce, Financial return for government support of large scale thin film solar photovoltaic manufacturing in Canada, Energy Policy 2010; 38: 4291 – 303.

DOI: 10.1016/j.enpol.2010.03.058

Google Scholar

[4] M. Thirugnanasambandam, S. Iniyan, R. Goic. A review of solar thermal technologies. Renew Sust Energy Rev 2010; 14(3); 312 – 22.

DOI: 10.1016/j.rser.2009.07.014

Google Scholar

[5] B. Sandnes, J. Rekstad. A photovoltaic/thermal (PV/T) collector with a polymer absorber plate: experimental study and analytic model. Sol Energy 2002; 72(1): 63–73.

DOI: 10.1016/s0038-092x(01)00091-3

Google Scholar

[6] MR. Patel,. Wind and Solar Power Systems 2006. Taylor and Francis group, 447.

Google Scholar

[7] JK. Tonui, Y. Tripanagnostopoulos. Renewable Energy 2007; 32; 623 – 37.

Google Scholar

[8] F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr. Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energy and Buildings 2010; 42; 2184 – 2199.

DOI: 10.1016/j.enbuild.2010.07.011

Google Scholar

[9] G. Xu, S. Deng, X. Zhang, L. Yang, Y. Zhang. Simulation of a Photovoltaic/Thermal Heat Pump System Having a Modified Collector/Evaporator. Sol. Energy 2009, 83: 1967-(1976).

DOI: 10.1016/j.solener.2009.07.008

Google Scholar

[10] A. Shahsavar, M. Ameri. Experimental investigation and modeling of a direct-coupled Experimental investigation and modeling of a direct-coupled PV/T air collector; Solar Energy 2010; 84; 1938-58.

DOI: 10.1016/j.solener.2010.07.010

Google Scholar

[11] HA. Zondag, DW. De Vries, WGJ. Van Helden, RJC van Zolingen, AA Van Steenhoven. The thermal and electrical yield of a PV – thermal collector. Solar Energy 2002; 72(2): 113 -28.

DOI: 10.1016/s0038-092x(01)00094-9

Google Scholar

[12] H. Mortezapour, B. Ghobadian, M.H. Khoshtaghaza, S. Minaei. Performance Analysis of a Two-way Hybrid Photovoltaic/Thermal Solar Collector, Journal of Agr. Sci. Tech. 2012; 14; 767 – 80.

Google Scholar

[13] Rakesh Kumar, Marc A. Rosen. A critical review of photovoltaic – thermal solar collectors for air heating. Applied Energy 2011; 88: 3603 – 3614.

DOI: 10.1016/j.apenergy.2011.04.044

Google Scholar

[14] Skoplaki, JA. Palyros. On the temperature difference of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy 2009; 83: 614 – 24.

DOI: 10.1016/j.solener.2008.10.008

Google Scholar

[15] AK. Agarwal, HP. Garg. Study of a photovoltaic-thermal system – thermosyphonic solar water heater combined with solar cells. Energy Convers Manage 1994; 35(7); 605 – 20.

DOI: 10.1016/0196-8904(94)90044-2

Google Scholar

[16] JA. Duffie, WA. Beckman. Solar Engineering of Thermal Processes, John Wiley & Sons, New York, (1980).

Google Scholar

[17] GN. Tiwari. Solar Energy Fundamentals, Design, Modeling and Applications, New Delhi, Narosa Publishing House; (2004).

Google Scholar

[18] SP. Sukhatme. Solar Energy. Mc Graw Hill; (1993).

Google Scholar

[19] Chow TT. Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Sol Energy 2003; 75: 143–52.

DOI: 10.1016/j.solener.2003.07.001

Google Scholar

[20] GN. Tiwari, MK. Ghosal. Renewable energy resources, basic principle and applications. Middlesex: Alpha Science International; (2005).

Google Scholar

[21] MA. Karim, MNA. Hawlader. Development of solar air collectors for drying applications; Energy Conversion and Management 2004; 45; 329-44.

DOI: 10.1016/s0196-8904(03)00158-4

Google Scholar

[22] SP. Sukhatme, Solar Energy. Tata McGraw –Hill Publishing Company (1984).

Google Scholar

[23] Adel A. Hegazy. Comparative study of the performances of four photovoltaic / thermal solar air collectors. Energy Convers Manage 2000; 41: 861 – 81.

DOI: 10.1016/s0196-8904(99)00136-3

Google Scholar

[24] S Satcunanathan, D. Deonaraine. A two pass solar air-heater. Solar Energy 1973; 15(1): 41–49.

DOI: 10.1016/0038-092x(73)90004-2

Google Scholar

[25] Anand S. Joshi, Arvind Tiwari. Energy and exergy efficiencies of a hybrid photovoltaic–thermal (PV/T) air collector. Renewable Energy 2007; 32; 2223-41.

DOI: 10.1016/j.renene.2006.11.013

Google Scholar

[26] Arvind Tiwari, M.S. Sodha. Parametric study of various configurations of hybrid PV/thermal air collector: Experimental validation of theoretical model. Solar Energy Materials and Solar Cells 2007; 91; 17 – 28.

DOI: 10.1016/j.solmat.2006.06.061

Google Scholar

[27] SA. Kalogirou, Y. Tripanagnostopoulos. Industrial application of PV/T solar energy systems. Applied Thermal Engineering 2007; 27: 1259–70.

DOI: 10.1016/j.applthermaleng.2006.11.003

Google Scholar

[28] Y. Tripanagnostopoulos, ThM. Souliotis, P. Yianoulis. Hybrid photovoltaic/thermal solar systems. Solar Energy 2002; 72: 217–34.

DOI: 10.1016/s0038-092x(01)00096-2

Google Scholar

[29] HA. Zondag, DW. De Vries, WGJ. Van Helden, RJC van Zolingen, AA Van Steenhoven. The thermal and electrical yield of a PV – thermal collector. Solar Energy 2002; 12; 415 – 26.

DOI: 10.1016/s0038-092x(01)00094-9

Google Scholar

[30] Solar Wall, PV/T solar air heating and electricityhttp: /solarwall. com/media/images-main/ 2-products/brochure/Solar Wall PVT_Spec. pdf.

Google Scholar

[31] M. Taki Al-Kamil, AA. Al-Ghareeb. Effect of thermal radiation inside solar air heaters; Energy Convers. Mgmt. 1997; Vol. 38; No. 14; 1451-58.

DOI: 10.1016/s0196-8904(96)00050-7

Google Scholar

[32] KGT. Hollands, TE. Unn, GR. Raithby, L. Konicek. Free convection heat transfer across inclined air layers. Transactions of ASME Journal of Heat Transfer 1976; 98: 189 – 93.

DOI: 10.1115/1.3450517

Google Scholar

[33] AJ. Huang, TH. Lin, WC. Hung, FS. Sun. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy 2001; 70(5): 443-8.

DOI: 10.1016/s0038-092x(00)00153-5

Google Scholar

[34] I. Adnan, K. Sopian, MJ. Othman, MH. Ruslan. Proceedings of the World Renewable Energy Congress X, Glasgow; Scotland; 19 – 25; July (2008).

Google Scholar