[1]
De Wit CA. An overview of brominated flame retardants in the environment. Chemosphere, 2002, 46(5): 583-674.
DOI: 10.1016/s0045-6535(01)00225-9
Google Scholar
[2]
Zou M Y, Ran Y, Gong J, et al. Polybrominated diphenyl ethers in watershed soils of the pearl River delta, China: occurrence, inventory, and fate. Environmental Science and Technology, 2007, 41(24): 8262-8267.
DOI: 10.1021/es071956d
Google Scholar
[3]
L. K. Lee, C. Ding, K. L. Yang, J. He. Complete Debromination of Tetra- and Penta-Brominated Diphenyl Ethers by a Coculture Consisting of Dehalococcoides and Desulfovibrio Species. Environ. Sci. Technol. 2011, 45, 8475–8482.
DOI: 10.1021/es201559g
Google Scholar
[4]
Kristin R, DAVID L. Aerobic Biotransformation of Polybrominated Diphenyl Ethers (PBDEs) by Bacterial Isolates. Environ. Sci. Technol. 2009, 43, 5705–5711.
DOI: 10.1021/es900411k
Google Scholar
[5]
Wang Z, Ma X D, Lin Z S, et al. Congener specific distributions of polybrominated diphenyl ethers (PBDEs) in sediment and mussel (Mytilus edulis) of the BoSea, China. Chemosphere, 2009, 74(7): 896-901.
DOI: 10.1016/j.chemosphere.2008.10.064
Google Scholar
[6]
Guan Y F, Sojinu S, Li S M, et al. Fate of polybrominated diphenyl ethers in the environment of the Pearl River estuary, South China. Environmental Pollution, 2009, 157(7): 2166-2172.
DOI: 10.1016/j.envpol.2009.02.006
Google Scholar
[7]
Gerhardt P, Murray R, Wood W, Krieg NR. Methods for general andmolecular bacteriology. American Society for Microbiology.
Google Scholar
[8]
Lemos M L, Toranzo A E, Barja J L. Modified medium for oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 1985, 40: 541–1543.
DOI: 10.1128/aem.49.6.1541-1543.1985
Google Scholar
[9]
Olga I. Nedashkovskaya, Anna M. Stenkova et. al. Echinimonas agarilytica gen. nov., sp. nov., a new gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius. Antonie van Leeuwenhoek (2013) 103: 69–77.
DOI: 10.1007/s10482-012-9787-y
Google Scholar
[10]
Jia Xin, Xiang Liu, Lu Jiang, Miao Li. BDE-47 sorption and desorption to soil matrix in single- and binary-solute systems. Chemosphere 87 (2012) 477–482.
DOI: 10.1016/j.chemosphere.2011.12.034
Google Scholar
[11]
Kaushik Dey, Pranab Roy. Degradation of Trichloroethylene by Bacillus sp.: Isolation Strategy, Strain Characteristics, and Cell Immobilization. Curr Microbiol (2009) 59: 256–260.
DOI: 10.1007/s00284-009-9427-6
Google Scholar
[12]
M. Sogani, N. Mathur, P. Bhatnagar, P. Sharma. Biotransformation of amide using Bacillus sp.: isolation strategy, strain characteristics and enzyme immobilization. Int. J. Environ. Sci. Technol. (2012) 9: 119–127.
DOI: 10.1007/s13762-011-0005-7
Google Scholar
[13]
Rui Zhao, Shiqi Ji, Yan Wang, Tong Yu, Zhao Li, Bingyu Li, Xiaochong Shi, Xiao-Hua Zhang. Litoribacillus peritrichatus gen. nov. sp. nov., isolated from coastal sediment of an amphioxus breeding zone in Qingdao, China. Antonie van Leeuwenhoek (2013).
DOI: 10.1007/s10482-012-9815-y
Google Scholar
[14]
Ludmila Kabaivanova, Plamen Dimitrov, vanka Boyadzhieva, Stefan Engibarov, Elena Dobreva, Elka Emanuilova. Nitrile degradation by free and immobilized cells of the thermophile Bacillus sp. UG-5B, isolated from polluted industrial waters. World J Microbiol Biotechnol (2008).
DOI: 10.1007/s11274-008-9757-8
Google Scholar
[15]
Li, G., et al., Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp GZB: Kinetics, mechanism and estrogenic transition. Bioresource Technology, 2012. 114: pp.224-230.
DOI: 10.1016/j.biortech.2012.03.067
Google Scholar
[16]
Tang, M. and M. You. Isolation, identification and characterization of a novel triazophos-degrading Bacillus sp (TAP-1). Microbiological Research, 2012. 167(5): pp.299-305.
DOI: 10.1016/j.micres.2011.10.004
Google Scholar
[17]
Zu, L., et al., Biodegradation kinetics and mechanism of 2, 4, 6-tribromophenol by Bacillus sp GZT: A phenomenon of xenobiotic methylation during debromination. Bioresource technology. 2012. 110: pp.153-159.
DOI: 10.1016/j.biortech.2012.01.131
Google Scholar
[18]
Myresiotis, C.K., Z. Vryzas and E. Papadopoulou-Mourkidou, Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation. 2012. 23(2): pp.297-310.
DOI: 10.1007/s10532-011-9509-6
Google Scholar
[19]
Chen, X., et al., Isolation and identification of a decabromodiphenyl ether degrading bacterium BD-24 and its degradation characteristics. Journal of Zhejiang University. Agriculture and Life Sciences, 2010. 36, pp.521-527.
Google Scholar
[20]
Huang, H.W., B.V. Chang and C.H. Cheng, Biodegradation of dibromodiphenyl ether in river sediment. Inter Bio & Biodegradation, 2012. 68: pp.1-6.
DOI: 10.1016/j.ibiod.2011.11.011
Google Scholar