Visible-Light Illumination Enhanced Hydrogen Evolution on CuO Modified TiO2 Nanotube Arrays/Ti Electrocatalyst

Article Preview

Abstract:

TiO2 nanotube arrays (TNAs) modified by CuO (CuO-TNAs) catalysts were prepared by an impregnating-calcinating method using the electrochemically prepared TNAs and Cu (NO3)2 as precursors and were characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction spectroscopy and UV-visible spectroscopy. The electrocatalytic properties of the CuO-TNAs samples for hydrogen evolution reaction (HER) were investigated by linear sweep curves, electrochemical impedance spectrum and current-time curves. The results showed that the electrocatalytic activity of TNAs for hydrogen evolution reaction (HER) was significantly enhanced by CuO modification, and the electrocatalytic activity of CuO-TNAs catalysts could be further promoted by visible-light illumination. The combination of visible-light irradiation with applying a controlled potential may provide new insight into enhancing the performances of the cathode for hydrogen evolution reaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

343-348

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Galal, S.A. Darwish, N.F. Atta, S.M. Ali and A.A. Abd El Fatah: Appl. Catal. A Vol. 378 (2010), p.151.

Google Scholar

[2] A. Kiani and S. Hatami: Int. J. Hydrogen Energy Vol. 35 (2010), p.5202.

Google Scholar

[3] P. Paunović, O. Popovski, A. Dimitrov, D. Slavkov, and E. Lefterova: Electrochim. Acta Vol. 52 (2006), p.1810.

DOI: 10.1016/j.electacta.2005.12.059

Google Scholar

[4] H.J. Choi and M. Kang: Int. J. Hydrogen Energy Vol. 32 (2007), p.3841.

Google Scholar

[5] J. Bandara, C.P. Udawatta and C.S. Rajapakse: Photochem. Photobiol. Sci. Vol. 4 (2005), p.857.

Google Scholar

[6] Z.L. Jin, X.J. Zhang, Y.X. Li, S.B. Li and G.X. Lu: Catal. Commun. Vol. 8 (2007), p.1267.

Google Scholar

[7] R. Oriňáková and M. Filkusová: Synth. Met. Vol. 160 (2010), p.927.

Google Scholar

[8] X. Hu, B.S. Brunschwig and J.C. Peters: J. Am. Chem. Soc. Vol. 129 (2007), p.8988.

Google Scholar

[9] S.M.A. Shibli and V.S. Dilimon: Int. J. Hydrogen Energy Vol. 32 (2007), p.1694.

Google Scholar

[10] J. Cheng, H. Zhang, H. Ma, H. Zhong and Y. Zou: Electrochim. Acta Vol. 55 (2010), p.1855.

Google Scholar

[11] S.M.A. Shibli and V.S. Dilimon: Int. J. Hydrogen Energy Vol. 33 (2008), p.1104.

Google Scholar

[12] J.E. Son, J. Chattopadhyay and D. Pak: Int. J. Hydrogen Energy Vol. 35 (2010), p.420.

Google Scholar

[13] J. Chattopadhyay, H.R. Kim, S.B. Moon and D. Pak: Int. J. Hydrogen Energy Vol. 33 (2008), p.3270.

Google Scholar

[14] Z.H. Xu, J.G. Yu and G. Liu: Electrochem. Commun. Vol. 13 (2011), p.1260.

Google Scholar

[15] Z.H. Xu and J.G. Yu: Nanoscale Vol. 3 (2011), p.3188.

Google Scholar

[16] C. Ruan, M. Paulose, O.K. Varghese, G.K. Mor and C.A. Grimes: J. Phys. Chem. B Vol. 109 (2005), p.15754.

Google Scholar

[17] Z.H. Xu and J.G. Yu: Nanotechnology Vol. 21 (2010), p.245501.

Google Scholar

[18] Z. Yan, Z. Xu and S. Yang: Adv. Mater. Res. Vol. 345 (2012), p.60.

Google Scholar

[19] B. Zhu, X. Zhang, S. Wang, S. Zhang, S. Wu and W. Huang: Microporous Mesoporous Mater. Vol. 102 (2007), p.333.

Google Scholar

[20] J. Huang, S. Wang, Y. Zhao, X. Wang, S. Wang, S. Wu, S. Zhang and W. Huang: Catal. Commun. Vol. 7 (2006), p.1029.

Google Scholar

[21] F.Y. Oliva, L.B. Avalle and O.R. Cámara: J. Electroanal. Chem. Vol. 534 (2002), p.19.

Google Scholar

[22] M. Koelsch, S. Cassaignon, Z.F. Guillemoles and J.P. Jolivet: Thin Solid films Vol. 403-404 (2002), p.312.

DOI: 10.1016/s0040-6090(01)01509-7

Google Scholar

[23] R. Solmaz, A. Döner, İ. Sahin, A.O. Yüce, G. Kardaş, B. Yazici and M. Erbil: Int. J. Hydrogen Energy Vol. 34 (2009), p.7910.

Google Scholar