LiFePO4/C Cathode Materials Prepared by One-Step Fast Carbothermal Method Using Fe2O3 as Raw Materials

Article Preview

Abstract:

LiFePO4/C was successfully synthesized by one-step solid-state reaction using Fe2O3, LiH2PO4 and sucrose as raw materials. The effect of synthesis temperature and sintering atmosphere on the electrochemical performance were investigated. LiFePO4/C materials were characterized by differential scanning calorimetry and thermogravimetry, X-ray diffraction, scanning electron microscopy and XPS. The results show that the synthesis temperature between 750 °C and 800 °C were appropriate and the reductive ambience can enhance the electrochemical performance effectively especially at high rates. The precursor calcined at 750°C for 5h in a N2+5%H2 atmosphere exhibited the highest discharge capacity of 155 mAh/g at 0.1C and 141 mAh/g at 1C and showed the best cycle performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

709-713

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J Electrochem Soc, 144 (1997) 1188-1194.

Google Scholar

[2] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, J Electrochem Soc, 152 (2005) A607-A610.

DOI: 10.1149/1.1860492

Google Scholar

[3] P.X. Zhang, Y.Y. Wang, M.C. Lin, D.Y. Zhang, X.Z. Ren, Q.H. Yuan, J Electrochem Soc, 159 (2012) A402-A409.

Google Scholar

[4] Q. Ren, Y. Yang, Chinese J Struc Chem, 30 (2011) 1477-1482.

Google Scholar

[5] M.J. Li, L.Q. Sun, K. Sun, S.H. Yu, R.S. Wang, H.M. Xie, J Solid State Electr, 16 (2012) 3581-3586.

Google Scholar

[6] Y.Q. Wang, Z.P. Liu, S.M. Zhou, Electrochim Acta, 58 (2011) 359-363.

Google Scholar

[7] Y. Lin, H.G. Pan, M.X. Gao, H. Miao, S.Q. Li, Y. Wang, Surf Rev Lett, 15 (2008) 133-138.

Google Scholar

[8] C.H. Zhang, X. Huang, Y.S. Yin, J.H. Dai, Z.B. Zhu, Ceram Int, 35 (2009) 2979-2982.

Google Scholar

[9] Y.F. Wu, X.B. Ma, C.S. Li, Y.N. Liu, Z.P. Xi, Rare Metal Mat Eng, 40 (2011) 596-598.

Google Scholar

[10] G. Wang, G. Su, M.M. Yan, W.B. Cai, Z.Y. Jiang, Chem J Chinese U, 28 (2007) 136-139.

Google Scholar

[11] S.Q. Yuan, K.J. Dai, Russ J Electrochem+, 47 (2011) 1068-1071.

Google Scholar

[12] H.J.Z. Wen Kui Zhang, Yang Xia, Adv. Mater. Res., 399-401 (2012) 1510-1514.

Google Scholar

[13] Q. Fan, Y.F. Tang, Y.F. Chen, J Power Sources, 205 (2012) 463-466.

Google Scholar

[14] G.R. Hu, X.G. Gao, Z.D. Peng, K. Du, Y.J. Liu, Chinese Chem Lett, 18 (2007) 337-340.

Google Scholar

[15] C.W. Kim, J.S. Park, K.S. Lee, J Power Sources, 163 (2006) 144-150.

Google Scholar

[16] H.W. Liu, D.G. Tang, Solid State Ionics, 179 (2008) 1897-(1901).

Google Scholar

[17] M. Konarova, I. Taniguchi, J Power Sources, 194 (2009) 1029-1035.

Google Scholar