[1]
Wu, J. P., Sun, D. S. Modern Data Analysis, Mechanical Industry Press, Beijing, (2006), p.35–87.
Google Scholar
[2]
Deng, N. Y., Tian, Y. J. A New Method in Data Mining-Support Vector Machine, Science Press, Beijing, (2004), p.164–372.
Google Scholar
[3]
Vapnik, V. N. Statistical Learning Theory, Wiley, New York, (1998) pp.32-56.
Google Scholar
[4]
Zhu, G. B., Blumberg, D. G. Classification Using ASTER Data and SVM Algorithms: The Case Study of Beer Sheva, Israel, Remote Sensing of Environment, 80(2), (2002), pp.233-240.
DOI: 10.1016/s0034-4257(01)00305-4
Google Scholar
[5]
Foody, G. M., Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM, Remote Sensing of Environment, 103(2), (2006), pp.179-189.
DOI: 10.1016/j.rse.2006.04.001
Google Scholar
[6]
Camps-Valls, G., Martin-Guerrero, J. D., Rojo-Alvarez, J. L., et al. Fuzzy Sigmoid Kernel for Support Vector Classifiers, Neurocomputing, 62(6), (2004), pp.501-506.
DOI: 10.1016/j.neucom.2004.07.004
Google Scholar
[7]
Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., et al. Kernel-based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection, IEEE Transactions on Geoscience and Remote Sensing, 46(6), (2008).
DOI: 10.1109/tgrs.2008.916201
Google Scholar
[8]
Fauvel, M., Chanussot, J., Benediktsson, J. A. A Combined Support Vector Machines Classification Based on Decision Fusion, Proceedings of the IEEE Intl Geoscience and Remote Sensing Symposium, Denver, CO, USA, (2006), pp.2494-2497.
DOI: 10.1109/igarss.2006.645
Google Scholar
[9]
Zhang, Y. N., Zhang, J. B., Liao, Y., et al. Recognition of Remote Sensing Target Based on Support Vector Machine, Journal of Northwestern Polytechnical University, 20(4), (2002), pp.536-539.
Google Scholar
[10]
Liu, Z. G., Li, D. R., Qin, Q. Q., et al. An Analytical Overview of Methods of Multi-category Support Vector Machines, Computer Engineering and Applications, (07), (2004), pp.10-13.
Google Scholar
[11]
Shen, Z. Q., Shu, N., Tao, J. B. An Algorithm of Weighted"1Vm"SVM Multi-classification for Hyperspectral Remote Sensing Image with NPA, Geomatics and Information Science of Wuhan University, 34(12), (2009), pp.1444-1447.
Google Scholar
[12]
Tan, K., Du, P. J. Hyperspectral Remote Sensing Image Classification Based on Support Vector Machine, Journal of Infrared and Millimeter Waves, 28(02), (2008), p.2009-(2013).
DOI: 10.3724/sp.j.1010.2008.00123
Google Scholar
[13]
Huang, X., Zhang, L. P., Li, P. X. Classification of High Spatial Resolution Remotely Sensed Imagery Based Upon Fusion of Multiscale Features and SVM, Journal of Remote Sensing, 11(1), (2007), pp.48-54.
Google Scholar