[1]
D. Xia, C. He, L. Zhu, Y. Huang, H. Dong, M. Su, M.A. Asi, D. Bian. A novel wet-scrubbing process using Fe (vi) for simultaneous removal of SO2 and NO. Journal of Environmental Monitoring, 13. 4 (2011): 864-870.
DOI: 10.1039/c0em00647e
Google Scholar
[2]
S. Sumathi, S. Bhatia, K.T. Lee, A.R. Mohamed. Adsorption isotherm models and properties of SO2 and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC). Chemical Engineering Journal, 162. 1 (2010): 194-200.
DOI: 10.1016/j.cej.2010.05.028
Google Scholar
[3]
Y. Liu, J. Zhang, C. Sheng, Y. Zhang, L. Zhao. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 162. 3 (2010): 1006-1011.
DOI: 10.1016/j.cej.2010.07.009
Google Scholar
[4]
F. Xu, Z. Luo, W. Cao, P. Wang, B. Wei, X. Gao, M. Fang, K. Cen. Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge. Journal of Environmental Sciences, 21. 3 (2009): 328-332.
DOI: 10.1016/s1001-0742(08)62272-x
Google Scholar
[5]
K. Chandrasekara Pillai, S.J. Chung, T. Raju, I.S. Moon. Experimental aspects of combined NOx and SO2 removal from flue-gas mixture in an integrated wet scrubber-electrochemical cell system. Chemosphere, 76. 5 (2009): 657-664.
DOI: 10.1016/j.chemosphere.2009.04.013
Google Scholar
[6]
L. Huang, Y. Dang. Removal of SO2and NOx by Pulsed Corona Combined with in situ Ca (OH)2 Absorption. Chinese Journal of Chemical Engineering, 19. 3 (2011): 518-522.
DOI: 10.1016/s1004-9541(11)60015-3
Google Scholar
[7]
Y. Han, W. Zhang, J. Xu. A performance study of simultaneous microbial removal of NO and SO2 in a biotrickling-filter under anaerobic condition. Brazilian Journal of Chemical Engineering, 28. 2 (2011): 189-196.
DOI: 10.1590/s0104-66322011000200003
Google Scholar
[8]
X. Bi, P. Sun, C. Yang, J. Wang, P. Zou, H. Wang, F. Deng, S. He. Simultaneous Removal of SO2 and NOx from Flue Gas by Liquid-Phase Catalytic Oxidation-Biological Purification Method. In E-Product E-Service and E-Entertainment (ICEEE), 2010 International Conference on. IEEE. (2010).
DOI: 10.1109/iceee.2010.5661187
Google Scholar
[9]
N.J. Kraakman, J. Rocha-Rios, M.C. van Loosdrecht. Review of mass transfer aspects for biological gas treatment. Applied microbiology and biotechnology, 91. 4 (2011): 873-886.
DOI: 10.1007/s00253-011-3365-5
Google Scholar
[10]
F. Habashi. A short history of hydrometallurgy. Hydrometallurgy, 79. 1 (2005): 15-22.
DOI: 10.1016/j.hydromet.2004.01.008
Google Scholar
[11]
G. Senanayake. A review of chloride assisted copper sulfide leaching by oxygenated sulfuric acid and mechanistic considerations. Hydrometallurgy, 98. 1 (2009): 21-32.
DOI: 10.1016/j.hydromet.2009.02.010
Google Scholar
[12]
F.G. Keenera, Fertilizer Manufacture. Patent number: U.S. Patent 2, 255, 027. (1941).
Google Scholar
[13]
M.I.M. Chou, J.A. Bruinius, V. Benig , S.F.J. Chou, R.H. Carty. Producing ammonium sulfate from flue gas desulfurization by-products. Energy sources, 27. 11 (2005): 1061-1071.
DOI: 10.1080/00908310490479510
Google Scholar
[14]
S. Chaturvedi, P.N. Dave. Review on Thermal Decomposition of Ammonium Nitrate. Journal of Energetic Materials, 31. 1 (2013): 1-26.
DOI: 10.1080/07370652.2011.573523
Google Scholar
[15]
J.C. Oxley, J.L. Smith, E. Rogers, M. Yu. Ammonium nitrate: thermal stability and explosivity modifiers. Thermochimica acta, 384. 1 (2002): 23-45.
DOI: 10.1016/s0040-6031(01)00775-4
Google Scholar