[1]
Asaeda, T., Bon, T.V., 1997. Modelling the effects of macrophytes on algal blooming in eutrophic shallow lakes. Ecol. Model. 104, 261-287.
DOI: 10.1016/s0304-3800(97)00129-4
Google Scholar
[2]
Webster, I.T., Sherman, B.S., Bormans, M., Jones, G., 2000. Management strategies for cyanobacterial blooms in an impounded lowland river. Regul. Rivers: Res. Manage. 16, 513-525.
DOI: 10.1002/1099-1646(200009/10)16:5<513::aid-rrr601>3.0.co;2-b
Google Scholar
[3]
Maier, H.R., Burch, M.D., Bormans, M., 2001. Flow management strategies to control blooms of the cyanobacterium, Anabaena circinalis, in the River Murray at Morgan South Australia. Regul. Rivers: Res. Manage. 17, 637-650.
DOI: 10.1002/rrr.623
Google Scholar
[4]
Jeong, K. -S., Kim, D. -K., Whigham, P., Joo, G. -J., 2003a. Modelling Microcystis aeruginosa bloom dynamics in the Nakdong River by means of evolutionary computation and statistical approach. Ecol. Model. 161, 67-78.
DOI: 10.1016/s0304-3800(02)00280-6
Google Scholar
[5]
Recknagel, F., 1997. ANNA-Artificial Neural Network model for predicting species abundance and succession of blue-green algae. Hydrobiologia 349, 47-57.
Google Scholar
[6]
Maier, H.R., Dandy, G.C., 2001. Neural Network Based Modelling of Environmental Variables: A Systematic Approach. Mathematical and Computer Modeling 33, 669-682.
DOI: 10.1016/s0895-7177(00)00271-5
Google Scholar
[7]
Wei, B., Sugiura, N., Maekawa, T., 2001. Use of artificial neural network in the prediction of algal blooms. Water Research 35(8), 2022-(2028).
DOI: 10.1016/s0043-1354(00)00464-4
Google Scholar
[8]
Walter, M., Recknagel, F., Carpenter, C., Bormans, M., 2001. Predicting eutrophication effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the recurrent neural network model ANNA. Ecological Modeling 146 (1-3), 97-114.
DOI: 10.1016/s0304-3800(01)00299-x
Google Scholar
[9]
Heyi Wang, Yi Gao, Zhaoan Xu, Weidong Xu. 2011 International Conference on Remote Sensing, Environment and Transportation Engineering. 984-988.
DOI: 10.1109/rsete.2011.5964444
Google Scholar
[10]
Olden, J.D., Joy, M.K., Death, R.G., 2004. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 178, 389-397.
DOI: 10.1016/j.ecolmodel.2004.03.013
Google Scholar
[11]
Jeong, K. -S., Kim, D. -K., Joo, G. -J., 2006. River phytoplankton prediction model by Artificial Neural Network: model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system. Ecol. Inform. 1, 235-245.
DOI: 10.1016/j.ecoinf.2006.04.001
Google Scholar
[12]
Hansel-welch, N., Butler, M.G., Carlson, T.J., Hanson, M.A., 2003. Changes in macrophyte community structure in Lake Christina (Minnesota), a large shallow lake, following biomanipulation. Aquatic Botany 75, 323-337.
DOI: 10.1016/s0304-3770(03)00002-0
Google Scholar
[13]
Tan, X., Kong, F.X., Zeng, Q.F., Cao, H.S., Qian, S.Q., Zhang, M., 2009. Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors. Journal of Environmental Sciences 21, 892-899.
DOI: 10.1016/s1001-0742(08)62359-1
Google Scholar
[14]
Qiao Shuliang, Jin man, Chen Guoping, Zou Shan. Calculation method and characteristics of wind-wave in lake. Hydro-Science and Engineering. 1996(3), 189-198.
Google Scholar
[15]
Marcel Bottema, Gerbrant Ph. van Vledder. A ten-year data set for fetch- and depth-limited wave growth. Coastal Engineering 56 (2009) , 703-725.
DOI: 10.1016/j.coastaleng.2009.01.012
Google Scholar
[16]
Hu,W., Pu,P., Qin,B., 1998. A three-dimensional numerical simulation on the dynamics in Taihu Lake, China(I): the water level and the current during the 9711 typhoon process.J. LakeSci. 4, 17-25(in Chinese with English abstract).
DOI: 10.18307/1998.0403
Google Scholar
[17]
Vanderpoorten, A., Palm, R., 1998. Canonical variables of aquatic bryophyte combinations for predicting water trophic level. Hydrobiologia 386, 85-93.
Google Scholar
[18]
Recknagel, F., French, M., Harkonen, P., Yabunaka, K. -I., 1997. Artificial neural network approach for modeling and prediction of algal blooms. Ecol. Model. 96, 11-28.
DOI: 10.1016/s0304-3800(96)00049-x
Google Scholar
[19]
Tarassenko, L., 1998. A Guide to Neural Computing Applications. Arnold Publishers, London.
Google Scholar
[20]
Hecht-Nielsen, R., 1987. Kolmogorov's mapping neural network existence theorem. Proceedings of 1st IEEE International Joint Conference of Neural Networks. Institute of Electrical and Electronics Engineers, New York, NY.
Google Scholar
[21]
Jeong, K.S., Joo, G.J., Kim, H.W., Ha, K., Recknagel, F., 2001. Prediction and elucidation of algal dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecological Modeling 146, 115-129.
DOI: 10.1016/s0304-3800(01)00300-3
Google Scholar
[22]
Zar, J.H., 1984. Biostatistical Analysis, 2nd edition. Prentice-Hall, NJ, p.718.
Google Scholar
[23]
Zhu Yongchun, Cai Qiming. The dynamic research of the influence of wind field on the migration of algae in Taihu Lake. [J] JOURNALOFLAKESCIENCES 1997, 6: 152-158.
DOI: 10.18307/1997.0210
Google Scholar
[24]
ZHANG Yi-min, ZHANG Yong-chun et. The influence of lake hydrodynamics on blue algal growth. [J] China Environmental Science. 2007, 27(5):707-711.
Google Scholar