[1]
D.N. Thomas, S.J. Judo, N. Fawcett, Flocculation modeling: a review, Water Res., 33(1999) 1579– 1592.
Google Scholar
[2]
S. Bárány, R. Meszaros, L. Marcinova, Effect of polyelectrolyte mixtures on the electrokinetic potential and kinetics of flocculation of clay mineral particles, Colloids Surf., A: Physicochemical and Engineering Aspects, 383(2011)48-55.
DOI: 10.1016/j.colsurfa.2011.01.051
Google Scholar
[3]
W. Yu, G. Li, Y. Xu, Breakage and re-growth of flocs formed by alum and PACl, Powder Technol. , 189(2009)439-443.
DOI: 10.1016/j.powtec.2008.07.008
Google Scholar
[4]
F. Sekiou, A. Kellil, Effect of organic and mineral matters on kinetic and performance of flocculation, Desalination, 249(2009)891-894.
DOI: 10.1016/j.desal.2009.09.019
Google Scholar
[5]
J.D. Boadway, Dynamics of growth and breakage of alum floc in presence of fluid shear, J. Environ. Eng. Div., 104(1978)901-915.
DOI: 10.1061/jeegav.0000826
Google Scholar
[6]
C.F. Lu, L.A. Spielman, Kinetics of floc breakage and aggregation in agitated liquid suspensions, J. Colloid Interface Sci., 103(1985)95-105.
DOI: 10.1016/0021-9797(85)90080-3
Google Scholar
[7]
J.D. Pandya, L.A. Spielman, Floc breakage in agitated suspensions: theory and data processing strategy, J. Colloid Interface Sci., 90(1982)517-531.
DOI: 10.1016/0021-9797(82)90317-4
Google Scholar
[8]
M.E. Costas, M. Moreau, L. Vicente, Some analytical and numerical solutions for colloidal aggregation with fragmentation, J. Phys. A: Math. Gen., 28(1995)2981-2994.
DOI: 10.1088/0305-4470/28/11/004
Google Scholar
[9]
P.T. Spicer, S.E. Pratsinis, Coagulation and fragmentation: Universal steady‐state particle‐size distribution, AlChE J., 42(1996)1612-1620.
DOI: 10.1002/aic.690420612
Google Scholar
[10]
J.C. Flesch, P.T. Spicer, S.E. Pratsinis. Laminar and turbulent shear‐induced flocculation of fractal aggregates, AlChE J., 45(1999)1114-1124.
DOI: 10.1002/aic.690450518
Google Scholar
[11]
S.J. Peng, R.A. Williams, Direct measurement of floc breakage in flowing suspensions, J. Colloid Interface Sci., 166(1994)321-332.
DOI: 10.1006/jcis.1994.1302
Google Scholar
[12]
J.J. Zhang, X.Y. Li, Modeling particle‐size distribution dynamics in a flocculation system, AlChE J., 49(2003)1870-1882.
Google Scholar
[13]
T. Serra, X. Casamitjana, Modelling the aggregation and break-up of fractal aggregates in a shear flow, Appl. Sci. Res., 59(1997)255-268.
Google Scholar
[14]
T. Serra, X. Casamitjana, Effect of the shear and volume fraction on the aggregation and breakup of particles, AlChE J., 44(1998)1724-1730.
DOI: 10.1002/aic.690440803
Google Scholar
[15]
T.A. Kramer, M.M. Clark, Incorporation of aggregate breakup in the simulation of orthokinetic coagulation, J. Colloid Interface Sci., 216(1999)116-126.
DOI: 10.1006/jcis.1999.6305
Google Scholar
[16]
A.A. Potanin, On the mechanism of aggregation in the shear flow of suspensions, J. Colloid Interface Sci., 145(1991)140-157.
DOI: 10.1016/0021-9797(91)90107-j
Google Scholar
[17]
A.K.C. Yeung, R. Pelton, Micromechanics: a new approach to studying the strength and breakup of flocs, J. Colloid Interface Sci., 184(1996)579-585.
DOI: 10.1006/jcis.1996.0654
Google Scholar
[18]
P.T. Spicer, S.E. Pratsinis, J. Raper, Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks, Powder Technol., 97(1998)26-34.
DOI: 10.1016/s0032-5910(97)03389-5
Google Scholar
[19]
W. Chen, R.R. Fisher, J.C. Berg, Simulation of particle size distribution in an aggregation-breakup process, Chem. Eng. Sci., 45(1990)3003-3006.
DOI: 10.1016/0009-2509(90)80201-o
Google Scholar
[20]
J. He, X. Wei, T. J, Introduction of a new flocculation control factor based on kinetics and fractal dimension concept, J. Harbin Institute Technol., 42(2010)1577-1580.
Google Scholar
[21]
J. He, F. Liu, L. OuYang, Research on flocculation kinetics factors based on control of floc fractal dimension, J. Harbin University of Commerce(Nat. Sci. Ed. ), 28(2012)16-19.
Google Scholar
[22]
Q. Jiang, B.E. Logan, Fractal dimensions of aggregates determined from steady-state size distributions, Environ. Sci. Technol., 25(1991)2031-(2038).
DOI: 10.1021/es00024a007
Google Scholar
[23]
X. Li, B.E. Logan, Size distributions and fractal properties of particles during a simulated phytoplankton bloom in a mesocosm, Deep Sea Res. Part II: Topical Studies in Oceanography, 42(1995)125-138.
DOI: 10.1016/0967-0645(95)00008-e
Google Scholar
[24]
J. He, X. Song, Research on treatment of water with low temperature and low turbidity using micro-vortex coagulation low pulsation sedimentation process, China Water & Wastewater, 15(1999)17-19.
Google Scholar
[25]
X. Li, B.E. Logan, Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid, Environ. Sci. Technol., 31(1997)1237-1242.
DOI: 10.1021/es960772o
Google Scholar