Parameters Effect on Photocatalytic Reduction Kinetics of Bromate in Aqueous Dispersion of TiO2

Article Preview

Abstract:

This paper studied the photocatalytic reduction kinetics of bromate in aqueous dispersion of TiO2 and investigated the effects of experimental parameters, including initial concentration of BrO3-, pH, TiO2 dosage, anion and cation. The results indicate that the process of photocatalytic reduction of bromate follows a zero-order kinetics. In all the investigated experimental parameters, the initial bromate concentration, pH and anion have great effect on the photocatalytic reduction kinetics. The processes of photocatalytic reduction of bromate show the pseudo first-order kinetics at initial bromate concentration of 0.39 μmolL-1, pH=5.0, or in presence of HCO3-/CO32-, NO3-, SO42-, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 779-780)

Pages:

1658-1665

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. J. Huang, Y. L. Cheng, Effect of characteristics of activated carbon on removal of bromate, Sep. Sci. Technol. 59 (2008), 101–107.

Google Scholar

[2] D. W. Shi, S. G. Xie, D. H. Wen, D. L. Xi, Removal of bromate and natural organic matter by using biologically activated carbon, Int. J. Environ. Pollut. 38 (2009) 180-192.

DOI: 10.1504/ijep.2009.026660

Google Scholar

[3] A. H. Konsowa, Bromate removal from water using granular activated carbon in a batch recycle, Desalin. Water Treat. 12 (2009) 375-381.

DOI: 10.5004/dwt.2009.1072

Google Scholar

[4] K. Listiarini, J. T. Tor, D. D. Sun, J. O. Leckie, Hybrid coagulation-nanofiltration membrane for removal of bromate and humic acid in water, J. Membrane Sci. 365 (2010) 154-159.

DOI: 10.1016/j.memsci.2010.08.048

Google Scholar

[5] S. Gyparakis, E. Diamadopoulos, Formation and reverse osmosis removal of bromate ions during ozonation of groundwater in coastal areas, Sep. Sci. Technol. 42 (2007) 1465-1476.

DOI: 10.1080/01496390701290011

Google Scholar

[6] N. H. Phillip, E. Gurten, V. Diyamandoglu, Transformation of bromine species during decomposition of bromate under UV light from low pressure mercury vapor lamps, Ozone Sci. Eng. 28 (2006) 217-228.

DOI: 10.1080/01919510600705384

Google Scholar

[7] J. A. Wisniewski, M. Kabsch-Korbutowicz, Bromate removal in the ion-exchange process , Desalination 261 (2010) 197-201.

DOI: 10.1016/j.desal.2010.03.029

Google Scholar

[8] A. Bhatnagar, Y. Choi, Y. Yoon, Bromate removal from water by granular ferric hydroxide (GFH) , J. Hazard. Mater. 170(2009) 134-140.

DOI: 10.1016/j.jhazmat.2009.04.123

Google Scholar

[9] Z. J. Dong, W. Y Dong, X. M. Zhang, X. H. Yu, F. Ouyang, H. Du, Removal of bromate by ferrous sulfate reduction in drinking water, 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009), (2009) 4.

DOI: 10.1109/icbbe.2009.5163304

Google Scholar

[10] L. Xie, C. Shang, The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction, Chemosphere 66 (2007) 1652-1659.

DOI: 10.1016/j.chemosphere.2006.07.048

Google Scholar

[11] L. Xie, C. Shang, Effects of copper and palladium on the red-action of bromate by Fe(0), Chemosphere 64 (2006) 919-930.

DOI: 10.1016/j.chemosphere.2006.01.042

Google Scholar

[12] H. Chen, Z. Y. Xu, H. Q. Wan, J. Z. Zheng, D. Q. Yin, S. R. Zheng, Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts, Appl. Catal. B: Environ. 96 (2010) 307-313.

DOI: 10.1016/j.apcatb.2010.02.021

Google Scholar

[13] L. A. Ding, Q. Li, H. Cui, R. Tang, H. Xu, X. C. Xie, Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode An efficient and green technology for the removal of BrO3- in aqueous solutions, J. P. Zhai, Electrochim. Acta 55 (2010).

DOI: 10.1016/j.electacta.2010.07.062

Google Scholar

[14] F. Paschoal, G. Pepping, M. Zanoni, M. A. Anderson, Photoelectrocatalytic removal of bromate using Ti/TiO2 coated as a photocathode, Environ. Sci. Technol. 43 (2009) 7496-7502.

DOI: 10.1021/es803366d

Google Scholar

[15] A. Mills, G. Meadows, Heterogeneous redox catalysis-a novel route for removing bromate ions from water, Wat. Res. 29 (1995) 2181-2185.

DOI: 10.1016/0043-1354(95)00037-l

Google Scholar

[16] H. Noguchi, A. Nakajima, T. Watanabe, K. Hashimoto, Design of a photocatalyst for bromate decomposition: surface modification of TiO2 by pseudo-boehmite, Environ. Sci. Technol. 37 (2003): 153-157.

DOI: 10.1021/es0258733

Google Scholar

[17] R. Song, P. Westerhoff, R. Minear, G. Amy, Bromate minimization during ozonation, J. Am. Water Works Assoc. 89 (1997) 69-78.

DOI: 10.1002/j.1551-8833.1997.tb08243.x

Google Scholar

[18] M. Qamar, M. Muneer, D. Bahnemann, Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide, J. Environ. Manage. 80 (2006) 99-106.

DOI: 10.1016/j.jenvman.2005.09.002

Google Scholar

[19] N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci. 21 (2009) 527-533.

DOI: 10.1016/s1001-0742(08)62303-7

Google Scholar

[20] C. H. Liao, S. F. Kang, F. A. Wu, Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process, Chemosphere 44 (2001) 1193-1200.

DOI: 10.1016/s0045-6535(00)00278-2

Google Scholar

[21] H. Chun, Y. C. Tang, L. Y. Lin, Z. P. Hao, Y. Z. Wang, H. X. Tang, Effects of inorganic anions on photoactivity of various photocatalysts under different conditions, J. Chem. Technol. Biot. 79 (2004) 247-252.

DOI: 10.1002/jctb.934

Google Scholar

[22] K. Wang, J. Y. Zhang, L. P. Lou, S. Y. Yang, Y. X. Chen, UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions, J. Photoch. hotobio. A 165 (2004) 201-207.

DOI: 10.1016/j.jphotochem.2004.03.025

Google Scholar

[23] M. Abdullah, G. Low, R. W. Matthews, Effects of common inorganic anions on rates of oxidation of organic-carbon over illuminated titanium-dioxide, J. Phys. Chem. 94 (1990) 6820-6825.

DOI: 10.1021/j100380a051

Google Scholar

[24] X. D. Zhu, M. A. Nanny, E. C. Butler, Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite, J. Photoch. Photobio. A 185 (2007) 289-294.

DOI: 10.1016/j.jphotochem.2006.06.023

Google Scholar

[25] V. Brezova, A. Blazkova, E. Borosova, M. Ceppan, R. Fiala, The influence of dissolved metal-ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions, J. Mol. Catal. A-Chem. 98 (1995) 109-116.

DOI: 10.1016/1381-1169(95)00013-5

Google Scholar

[26] W X. Liu, Z. K. Luan, H. R. Tang, The chemical species and ecological effects of aluminium in natural waters, Acta Ecologica Sinica (1996) 212-220.

Google Scholar

[27] M. Siddiqui, G. Amy, K. Ozekin, W. Zhai, P. Westerhoff, Alternative strategies for removing bromate, J. Am. Water Works Assoc. 86 (1994) 81-96.

DOI: 10.1002/j.1551-8833.1994.tb06263.x

Google Scholar