[1]
W. J. Huang, Y. L. Cheng, Effect of characteristics of activated carbon on removal of bromate, Sep. Sci. Technol. 59 (2008), 101–107.
Google Scholar
[2]
D. W. Shi, S. G. Xie, D. H. Wen, D. L. Xi, Removal of bromate and natural organic matter by using biologically activated carbon, Int. J. Environ. Pollut. 38 (2009) 180-192.
DOI: 10.1504/ijep.2009.026660
Google Scholar
[3]
A. H. Konsowa, Bromate removal from water using granular activated carbon in a batch recycle, Desalin. Water Treat. 12 (2009) 375-381.
DOI: 10.5004/dwt.2009.1072
Google Scholar
[4]
K. Listiarini, J. T. Tor, D. D. Sun, J. O. Leckie, Hybrid coagulation-nanofiltration membrane for removal of bromate and humic acid in water, J. Membrane Sci. 365 (2010) 154-159.
DOI: 10.1016/j.memsci.2010.08.048
Google Scholar
[5]
S. Gyparakis, E. Diamadopoulos, Formation and reverse osmosis removal of bromate ions during ozonation of groundwater in coastal areas, Sep. Sci. Technol. 42 (2007) 1465-1476.
DOI: 10.1080/01496390701290011
Google Scholar
[6]
N. H. Phillip, E. Gurten, V. Diyamandoglu, Transformation of bromine species during decomposition of bromate under UV light from low pressure mercury vapor lamps, Ozone Sci. Eng. 28 (2006) 217-228.
DOI: 10.1080/01919510600705384
Google Scholar
[7]
J. A. Wisniewski, M. Kabsch-Korbutowicz, Bromate removal in the ion-exchange process , Desalination 261 (2010) 197-201.
DOI: 10.1016/j.desal.2010.03.029
Google Scholar
[8]
A. Bhatnagar, Y. Choi, Y. Yoon, Bromate removal from water by granular ferric hydroxide (GFH) , J. Hazard. Mater. 170(2009) 134-140.
DOI: 10.1016/j.jhazmat.2009.04.123
Google Scholar
[9]
Z. J. Dong, W. Y Dong, X. M. Zhang, X. H. Yu, F. Ouyang, H. Du, Removal of bromate by ferrous sulfate reduction in drinking water, 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009), (2009) 4.
DOI: 10.1109/icbbe.2009.5163304
Google Scholar
[10]
L. Xie, C. Shang, The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction, Chemosphere 66 (2007) 1652-1659.
DOI: 10.1016/j.chemosphere.2006.07.048
Google Scholar
[11]
L. Xie, C. Shang, Effects of copper and palladium on the red-action of bromate by Fe(0), Chemosphere 64 (2006) 919-930.
DOI: 10.1016/j.chemosphere.2006.01.042
Google Scholar
[12]
H. Chen, Z. Y. Xu, H. Q. Wan, J. Z. Zheng, D. Q. Yin, S. R. Zheng, Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts, Appl. Catal. B: Environ. 96 (2010) 307-313.
DOI: 10.1016/j.apcatb.2010.02.021
Google Scholar
[13]
L. A. Ding, Q. Li, H. Cui, R. Tang, H. Xu, X. C. Xie, Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode An efficient and green technology for the removal of BrO3- in aqueous solutions, J. P. Zhai, Electrochim. Acta 55 (2010).
DOI: 10.1016/j.electacta.2010.07.062
Google Scholar
[14]
F. Paschoal, G. Pepping, M. Zanoni, M. A. Anderson, Photoelectrocatalytic removal of bromate using Ti/TiO2 coated as a photocathode, Environ. Sci. Technol. 43 (2009) 7496-7502.
DOI: 10.1021/es803366d
Google Scholar
[15]
A. Mills, G. Meadows, Heterogeneous redox catalysis-a novel route for removing bromate ions from water, Wat. Res. 29 (1995) 2181-2185.
DOI: 10.1016/0043-1354(95)00037-l
Google Scholar
[16]
H. Noguchi, A. Nakajima, T. Watanabe, K. Hashimoto, Design of a photocatalyst for bromate decomposition: surface modification of TiO2 by pseudo-boehmite, Environ. Sci. Technol. 37 (2003): 153-157.
DOI: 10.1021/es0258733
Google Scholar
[17]
R. Song, P. Westerhoff, R. Minear, G. Amy, Bromate minimization during ozonation, J. Am. Water Works Assoc. 89 (1997) 69-78.
DOI: 10.1002/j.1551-8833.1997.tb08243.x
Google Scholar
[18]
M. Qamar, M. Muneer, D. Bahnemann, Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide, J. Environ. Manage. 80 (2006) 99-106.
DOI: 10.1016/j.jenvman.2005.09.002
Google Scholar
[19]
N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci. 21 (2009) 527-533.
DOI: 10.1016/s1001-0742(08)62303-7
Google Scholar
[20]
C. H. Liao, S. F. Kang, F. A. Wu, Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process, Chemosphere 44 (2001) 1193-1200.
DOI: 10.1016/s0045-6535(00)00278-2
Google Scholar
[21]
H. Chun, Y. C. Tang, L. Y. Lin, Z. P. Hao, Y. Z. Wang, H. X. Tang, Effects of inorganic anions on photoactivity of various photocatalysts under different conditions, J. Chem. Technol. Biot. 79 (2004) 247-252.
DOI: 10.1002/jctb.934
Google Scholar
[22]
K. Wang, J. Y. Zhang, L. P. Lou, S. Y. Yang, Y. X. Chen, UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions, J. Photoch. hotobio. A 165 (2004) 201-207.
DOI: 10.1016/j.jphotochem.2004.03.025
Google Scholar
[23]
M. Abdullah, G. Low, R. W. Matthews, Effects of common inorganic anions on rates of oxidation of organic-carbon over illuminated titanium-dioxide, J. Phys. Chem. 94 (1990) 6820-6825.
DOI: 10.1021/j100380a051
Google Scholar
[24]
X. D. Zhu, M. A. Nanny, E. C. Butler, Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite, J. Photoch. Photobio. A 185 (2007) 289-294.
DOI: 10.1016/j.jphotochem.2006.06.023
Google Scholar
[25]
V. Brezova, A. Blazkova, E. Borosova, M. Ceppan, R. Fiala, The influence of dissolved metal-ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions, J. Mol. Catal. A-Chem. 98 (1995) 109-116.
DOI: 10.1016/1381-1169(95)00013-5
Google Scholar
[26]
W X. Liu, Z. K. Luan, H. R. Tang, The chemical species and ecological effects of aluminium in natural waters, Acta Ecologica Sinica (1996) 212-220.
Google Scholar
[27]
M. Siddiqui, G. Amy, K. Ozekin, W. Zhai, P. Westerhoff, Alternative strategies for removing bromate, J. Am. Water Works Assoc. 86 (1994) 81-96.
DOI: 10.1002/j.1551-8833.1994.tb06263.x
Google Scholar