[1]
N. Urbach and F. Ahlemann (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information Technology Theory and Application, Vol. 11, No. 2, pp.5-40.
Google Scholar
[2]
J. F. Jr. Hair, W.C. Black, B.J. Babin and R.E. Anderson (2010). Multivariate data analysis: A global perspective (7th ed. ). Pearson Education International.
Google Scholar
[3]
C.D. Fornell and F. Larcker (1981). Evaluating structural equation models with unobservable variables and measurement errors. Journal of Marketing Research, Vol. 18, No. 1, pp.39-50.
DOI: 10.1177/002224378101800104
Google Scholar
[4]
W.W. Chin (1998). Issues and opinion on structural equation modeling. MIS Quarterly, Vol. 22, No. 1, pp. vii–xvi.
Google Scholar
[5]
J. Cohen (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.
Google Scholar
[6]
S. Geisser (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, Vol. 70, pp.320-328.
DOI: 10.1080/01621459.1975.10479865
Google Scholar
[7]
M. Stone (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Vol. 36, No. 2, pp.111-133.
DOI: 10.1111/j.2517-6161.1974.tb00994.x
Google Scholar
[8]
H. Wold (1975). Path models with latent variables: The NIPALS Approach. In H. M. Blalock, A. Aganbegian, F. M. Borodkin, R. Boudon, V. Capecchi (Ed. s), Quantitative Sociology (pp.307-359), New York: Academic Press.
DOI: 10.1016/b978-0-12-103950-9.50017-4
Google Scholar
[9]
W.W. Chin and P.R. Newsted (1999). Structural equation modelling analysis with small samples using partial least squares. In R. H. Hoyle (Ed. ), Statistical strategies for small sample research (pp.307-341). Thousand Oaks, CA: Sage.
Google Scholar
[10]
M. Haenlein and A. Kaplan (2004). A beginner's guide to partial least squares analysis. Understanding Statistics, Vol. 3, No. 4, pp.283-297.
DOI: 10.1207/s15328031us0304_4
Google Scholar