Electrospun La3+-Doped ZnO Nanofibers with High Photocatalytic Activity for Rhodamine B Degradation

Article Preview

Abstract:

Grape-like structure La3+-doped ZnO nanofibers with different doping concentrations were prepared by electrospinning-calcination technology. The resultant nanofibers were characterized by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), photoluminescence spectrum (PL) and X-ray photoelectron spectrum (XPS) respectively. The photocatalytic activities of the nanofibers for the degradation of Rhodamine B (RhB) in aqueous solution were studied. Results show that the doping concentration of La3+ has an significant influence on the photocatalytic performance of the nanofibers, and 2 mol.% La3+ is the optimal doping concentration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 779-780)

Pages:

337-342

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R. Hoffmann, S.T. Martin, W. Choi, et al.: Chem. Rev. 95 (1995), p.69.

Google Scholar

[2] M. Cristina Yeber, J. Rodrı́guez, J. Freer, et al.: Chemosphere 41 (2000), p.1193.

Google Scholar

[3] A.A. Khodja, T. Sehili, J. Pilichowski, et al.: J. Photochem. Photobiol. A: Chem. 141 (2001), p.231.

Google Scholar

[4] C. Ye, Y. Bando, G. Shen, et al.: J. Phys. Chem. B 110 (2006), p.15146.

Google Scholar

[5] B. Cao and W. Cai: J. Phys. Chem. C 112 (2008), p.680.

Google Scholar

[6] S. Sakthivel, B. Neppolian, M. Shankar, et al.: Sol. Energy Mater. Sol. Cells 77 (2003), p.65.

Google Scholar

[7] S. Shinde, C. Bhosale and K. Rajpure: J. Photoch. Photobio. B: Biol. 113(2012), p.70.

Google Scholar

[8] S. Sun, X. Chang, X. Li, et al.: Ceram. Int. 39 (2013), p.5197.

Google Scholar

[9] Z. Zhang, C. Shao, X. Li, et al.: J. Phys. Chem. C 114 (2010), p.7920.

Google Scholar

[10] Z. Zhang, C. Shao, X. Li, et al.: ACS Appl. Mater. Interfaces 2 (2010), p.2915.

Google Scholar

[11] Y. Zheng, C. Chen, Y. Zhan, et al.: J. Phys. Chem. C 112 (2008), p.10773.

Google Scholar

[12] R. Georgekutty, M.K. Seery and S.C. Pillai: J. Phys. Chem. C 112 (2008), p.13563.

Google Scholar

[13] Z. Wang, B. Huang, Y. Dai, et al.: J. Phys. Chem. C 113 (2009), p.4612.

Google Scholar

[14] J. Lahiri and M. Batzill: J. Phys. Chem. C 112 (2008), p.4304.

Google Scholar

[15] W. Cun, Z. Jincai, W. Xinming, et al.: Appl. Catal. B: Environ. 39 (2002), p.269.

Google Scholar

[16] Z.L. Liu, J.C. Deng, J.J. Deng, et al.: Mater. Sci. Eng., B 150 (2008), p.99.

Google Scholar

[17] X. Qiu, L. Li, J. Zheng, et al.: J. Phys. Chem. C 112 (2008), p.12242.

Google Scholar

[18] M. Samadi, H.A. Shivaee, M. Zanetti, et al.: J. Mol. Catal. A: Chem. 359(2012), p.42.

Google Scholar

[19] S. Anandan, A. Vinu, K. Sheeja Lovely, et al.: J. Mol. Catal. A: Chem. 266 (2007), p.149.

Google Scholar

[20] T. Jia, W. Wang, F. Long, et al.: J. Alloys Compd. 484 (2009), p.410.

Google Scholar

[21] W. Lan, Y. Liu, M. Zhang, et al.: Mater. Lett. 61 (2007), p.2262.

Google Scholar

[22] Y. Ryu, T. Lee and H. White: Appl. Phys. Lett. 83 (2003), p.87.

Google Scholar

[23] Y. Sun, G.M. Fuge and M.N. Ashfold: Chem. Phys. Lett. 396 (2004), p.21.

Google Scholar

[24] J. Liu, X. Huang, Y. Li, et al.: Mater. Lett. 60 (2006), p.1354.

Google Scholar

[25] Z. Fu, B. Lin, G. Liao, et al.: J. Cryst. Growth 193 (1998), p.316.

Google Scholar

[26] G. Du, F. Xu, Z. Yuan, et al.: Appl. Phys. Lett. 88 (2006), p.243101.

Google Scholar

[27] D. Zhang, Z. Xue and Q. Wang: J. Phys. D. Appl. Phys. 35 (2002), p.2837.

Google Scholar

[28] J. Hsu, D. Tallant, R. Simpson, et al.: Appl. Phys. Lett. 88 (2006), p.252103.

Google Scholar

[29] X. Teng, H. Fan, S. Pan, et al.: J. Appl. Phys. 100 (2006), p.053507.

Google Scholar