[1]
Milada Kozubková, Jana Rautová, Marian Bojko, Mathematical Model of Cavitation and Modelling of Fluid Flow in Cone, Procedia Engineering 39(2012): 9-18.
DOI: 10.1016/j.proeng.2012.07.002
Google Scholar
[2]
Concepción Paz, Eduardo Suárez, Antonio Eirís, Jacobo Porteiro, Development of a Predictive CFD Fouling Model for Diesel Engine Exhaust Gas Systems, Heat Transfer Engineering, 34(2013): 674-682.
DOI: 10.1080/01457632.2012.738321
Google Scholar
[3]
L. Zhou, M.Z. Xie and M. Jia, Application of Large Eddy Simulation to a Diesel Spray, Trans. of CSICE, 27(2009): 202-206.
Google Scholar
[4]
Y. S Yu and G.Y. Li, Multiphase Large Eddy Simulation of Diesel Fuel Spray Atomization, CHINESE INTERNAL COMBUSTION ENGINE ENGINEERING, 30(2009): 39-43.
Google Scholar
[5]
Shiyi Chen and Gary D. Doolen, Lattice Boltzmann method for fluid flows, Annual Review of Fluid Mechanics, 30(1998): 329–364.
DOI: 10.1146/annurev.fluid.30.1.329
Google Scholar
[6]
J.D. Sterling and S. Chen, Stability Analysis of Lattice Boltzmann Methods, Journal of Computational Physics, 123(1996): 196-206.
DOI: 10.1006/jcph.1996.0016
Google Scholar
[7]
Dazhi Yua, Renwei Mei, Li-Shi Luo and Wei Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences, 39(2003): 329-367.
DOI: 10.1016/s0376-0421(03)00003-4
Google Scholar
[8]
Kannan N. Premnath and John Abraham, Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow, Journal of Computational Physics, 224 (2007): 539-559.
DOI: 10.1016/j.jcp.2006.10.023
Google Scholar
[9]
R.K. Freitas, M. Meinke, and W. Schroder, Turbulence simulation via the lattice-Boltzmann method on hierarchically refined meshes, European Conference on Computational Fluid Dynamics, (2006).
Google Scholar
[10]
S. Hou, J. Sterling, S. Chen and G. D. Doolen, A lattice Boltzmann subgrid model for high Reynolds number flows, Pattern formation and lattice gas automata, American Mathematical Society, 1995: 151-166.
DOI: 10.1090/fic/006/12
Google Scholar
[11]
Jack G. M. Eggels, Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme, International Journal of Heat and Fluid Flow, 17(1996): 307-323.
DOI: 10.1016/0142-727x(96)00044-6
Google Scholar
[12]
Cheong S. -K., Liu J., Shu D., Wang J., Powell, C. F, Effects of ambient pressure on dynamics of near-nozzle diesel sprays studied by ultrafast X-radiography, SAE paper 2004-01-2026, (2004).
DOI: 10.4271/2004-01-2026
Google Scholar
[13]
Yue Y., Powell C.F., Poola R., Wang J., Schaller J. K, Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption, Atomization Sprays, 11(2001): 471-490.
DOI: 10.1615/atomizspr.v11.i4.100
Google Scholar
[14]
Powell C.F., Yue Y., Poola R., Wang J, Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays, Journal of Synchrotron Radiation, 7(2000): 356-360.
DOI: 10.1107/s0909049500013431
Google Scholar
[15]
A Kastengren, C.F. Powell, Spray density measurements using X-ray radiography, Proceedings of the Institution of Mechanical Engineers, 21(2007): 653-662.
DOI: 10.1243/09544070jauto392
Google Scholar
[16]
A.L. Kastengren, C.F. PowellNozzle, Geometry and Injection Duration Effects on Diesel Sprays Measured by X-Ray Radiography, Journal of Fluids Engineering, 130(2008).
DOI: 10.1115/1.2903516
Google Scholar