[1]
Lin, S., Huff, H.E., Hsieh, F.H. Texture and chemical characteristics of soy protein meat analogs extruded at high moisture. J. Food Sci, Vol. 65 (2000), pp.264-269.
DOI: 10.1111/j.1365-2621.2000.tb15991.x
Google Scholar
[2]
Yao,G., Liu K.S., Hsieh, F.H. A new method for characterizing fiber formation in meat analogs during high moisture extrusion.J. Food Sci, Vol. 69 (2004), pp.303-307.
DOI: 10.1111/j.1365-2621.2004.tb13634.x
Google Scholar
[3]
Areas, J.A.G. Extrusion of food proteins. Crit. Rev. Food Sci. Nutr, Vol. 31 (1992), pp.365-392.
Google Scholar
[4]
Burgess L.D., Stanley, D.W. A possible mechanism for thermal texturization of soybean protein. J. Inst. Can. Sci. Technol. Aliment, Vol. 9 (1976), pp.228-231.
Google Scholar
[5]
Hager, D.F. Effects of extrusion upon soy concentrate solubility. J. Afric. Food Chem, Vol. 32 (1984), pp.293-296.
DOI: 10.1021/jf00122a029
Google Scholar
[6]
Singh, B., Sekhon, K.S., & Sing, N. Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chemistry, Vol. 100 (2007), pp.198-202.
DOI: 10.1016/j.foodchem.2005.09.042
Google Scholar
[7]
Ke Shun Liu, Fu-Hung Hsieh. Protein-protein interactions in high moisture-extruded meat analogsss and heat-induced soy protein gels. J Amer Oil Chem Soc, Vol. 84 (2007), pp.741-748.
DOI: 10.1007/s11746-007-1095-8
Google Scholar
[8]
M.S. Ha, T.T.: Texturization of low-fat extruded/expelled soy flour by twin screw extruder. (University of Illinois, Urbana, USA., 1995).
Google Scholar
[9]
Maurice, T.J., Stanley, D.W. Texture-Structure relationships in texturized soy protein IV. Influence of process variables on extrusion texturization. J. Ints. Can. Sci. Technol. Aliment, Vol. 11 (1978), pp.1-6.
DOI: 10.1016/s0315-5463(78)73151-2
Google Scholar
[10]
Bo LI, Mei-ying QIAO, Fei LU. Composition, Nutrition, and Utilization of okara (Soybean residue). Food Reviews International, Vol. 28 (2012), pp.231-252.
DOI: 10.1080/87559129.2011.595023
Google Scholar
[11]
Yan Jing, Yu-Jie Chi. Effects of twin-screw extrusion on soluble dietary fiber and physicochemical properties of soybean residue. Food Chemistry, Vol. 138 (2013), pp.884-889.
DOI: 10.1016/j.foodchem.2012.12.003
Google Scholar
[12]
Normell Jhoe E. de Mesa, Sajid Alavi, Narpinder Singh, et al. Soy protein expanded extrudates: Baseline study using normal corn starch. Journal of Food Engineering, Vol. 90 (2009), pp.262-270.
DOI: 10.1016/j.jfoodeng.2008.06.032
Google Scholar
[13]
Hulya Akdogan. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International, Vol. 29 (1996), pp.423-429.
DOI: 10.1016/s0963-9969(96)00036-1
Google Scholar
[14]
Roman Fekete, Igor Jaššo, Marián Peciar. Influence of rotor on extrusion pressure. Powder Technology, Vol. 141 (2004), pp.210-218.
DOI: 10.1016/j.powtec.2004.02.009
Google Scholar
[15]
Della Valle. G., Tayeb. J. & Melcion, J. P. Relationship of extrusion variables with pressure and temperature during twin-screw extrusion cooking of starch. J. Food Eng., Vol. 6(1987), pp.423-444.
DOI: 10.1016/0260-8774(87)90003-3
Google Scholar
[16]
Akdogan, H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International, Vol. 29 (1996), pp.423-429.
DOI: 10.1016/s0963-9969(96)00036-1
Google Scholar
[17]
Rababah, T.M., Al-Manasneh M.A., Ereifej, K.I. Effect of chickpea, broad bean or isolate soy protein additions on the physio-chemical and sensory properties of biscuits. J. Food Sci, Vol. 71 (2006), pp.438-442.
DOI: 10.1111/j.1750-3841.2006.00077.x
Google Scholar