Discussion on Solar Photocatalytic Degradation of Treated Leachate Using Transition Metal-Nonmetal Co-Doped TiO2

Article Preview

Abstract:

Leachate biochemical effluent containing large quantities of refractory matters are difficult to degrade by traditional biological processes. Photocatalysis technology seems to be a promising solution for leachate biochemical effluent because it can oxidize refractory organic compounds to harmless inorganics. But there are two key problems in TiO2 photocatalytic degradation of biologically treated leachate. One is low quantum yield, the other is low photocatalytic activity in the visible-light region. The advice about solar photocatalytic degradation of biologically treated leachate using transition metal-nonmetal co-doped TiO2 is put forward.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1954-1957

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Davoli E, Gangai M L, MorselliL, et al: Chemosphere, 2003, 51: 357-368.

Google Scholar

[2] Butt T E, Oduyemi K O K: Environment International, 2003, 28: 597-608.

Google Scholar

[3] Park S, Choi KS, Joe KS, et al: Environ. Technol, 2001, 22(6): 639-645.

Google Scholar

[4] Huo S.L., Xi B.D., Yu H.C., et al: Journal of Environmental Sciences-China, 2008, 20(4): 492-498.

Google Scholar

[5] Li H J, Zhao Y C, Chai X L, et al: Environmental Pollution & Control , 2008 30(11) : 4-8.

Google Scholar

[6] Yang Z, Wang P, Zhang Y Q, et al: Environmental Pollution & Control , 2005, 27(3): 218-221. (In Chinese).

Google Scholar

[7] J. Rodrĺguez, L. Castrillón, E. Maraňón, et al: Water Research, 2004, 38: 3297-3303.

Google Scholar

[8] Ushikoshi K., Kobayashi T., Uematsu K., et al: Desalination, 2002, 150: 121-129.

Google Scholar

[9] Cao S., Chen G., Hu X.: Catalysis Today. 2003, 88: 37–47.

Google Scholar

[10] LI Y, WANG J, ZHENG S, et al.: China Environmental Science. , 2009, 29(5): 497-501.

Google Scholar

[11] Gong W., Duan X.: Waste Management, 2010, 30(11): 2103-2107.

Google Scholar

[12] Hermosilla D, Cortijo M, Huang C. P: Science of the Total Environment, 2009, 407: 3473-3481.

Google Scholar

[13] PanY X, Zheng H L, PanY F.: Chinese journal of environmental engineering. 2009, 3(12): 2159-2162.

Google Scholar

[14] Umar M., Aziz H.A. and Yusoff M.S.: Waste Management, 2010, 30(11): 2113-2121.

Google Scholar

[15] Tan L, Wang B S.: environmental science and management. 2009, 34 (4): 87-93.

Google Scholar

[16] Herrmann, J: Journal of Hazardous Materials, 2007, 146(3): 624-629.

Google Scholar

[17] Choi W, TerminA, HoffmannMR. J: Phys. Chem., 1994, 98: 13669-13679.

Google Scholar

[18] Luan Y, Fu P F, Dai X G: progress in chemistry. 2004, 16 (5): 738-746. (In Chinese).

Google Scholar

[19] Li Z, Shen W, He W, et al: Journal of Hazardous Materials, 2008, 155(3): 590-594.

Google Scholar

[20] Nahar M. S., Hasegawa K., Kagaya S: Chemosphere, 2006, 65: 1976-(1982).

Google Scholar

[21] Fangbai Li, et al: ACTA CHIMICA SINICA, 2001, 59(7)1072-1077. (In Chinese).

Google Scholar

[22] Asahi R., Morikawa T., Ohwaki T., et al: Science, 2001, 293(5528): 269-271.

Google Scholar

[23] Ananpattarachai J., Kajitvichyanukul P., Seraphin S: Journal of Hazardous Materials. 2009, 168(1): 253-261.

Google Scholar

[24] J.A. Rengifo-Herrera, C: Solar Energy, 2010, 84(1): 37-43.

Google Scholar

[25] Sangwook L., In-Sun C., Duk K. L., et al: Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213(2-3): 129-135.

Google Scholar

[26] J. Senthilnathan, Ligy Philip: Chemical Engineering Journal, 2010, 161(1-2): 83-92.

Google Scholar

[27] M. Xing, J. Zhang and F. Chen: Appl. Catal. B: Environ. 2009, 89, 563–569.

Google Scholar