Interfacially Polymerized Composite Hollow Fiber Membrane for CO2 Separation

Article Preview

Abstract:

PEAm-TMC/PDMS/PVC composite hollow fiber membrane for CO2 separation was developed through interfacial polymerization (IP) on the PDMS pre-coated inner surface of PVC hollow fiber. Polyetheramine (PEAm) and Trimesoyl chloride (TMC) were selected as aqueous monomer and organic monomer, respectively. SEM observation result shows that the thickness of PEAm-TMC IP layer is about 215 nm. The effects of monomer concentrations and acid acceptor concentration on the membrane performance were investigated. The results shows that the CO2 permeance decareses and CO2/N2 selectivity increases with the increasing concentrations of PEAm, TMC and Na2CO3. At 0.12 MPa, the composite hollow fiber membrane possesses a very high CO2 permeance of 964 GPU and CO2/N2 selectivity of 40.6.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

2040-2046

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.E. Powell, G.G. Qiao: J. Membr. Sci., Vol. 279 (2006) p.1.

Google Scholar

[2] M.S.A. Rahaman, L. Zhang, L.H. Cheng, X. H. Xu: RSC Advances, Vol. 2 (2012) p.9165.

Google Scholar

[3] B. Belaissaoui, Y. Le Moullec, D. Willson, E. Favre: J. Membr. Sci., Vol. 415 (2012) p.424.

Google Scholar

[4] S.A. Jayarathna, B. Lie, M.C. Melaaen: Comput. Chem. Eng., Vol. 53 (2013) p.178.

Google Scholar

[5] J.H. Wee: Appl. Energ., Vol. 106 (2013) p.143.

Google Scholar

[6] H. Chen, A.S. Kovvali, S. Majumdar, K.K. Sirkar: Ind. Eng. Chem. Res., Vol. 38 (1999) p.3489.

Google Scholar

[7] H. Lin, B.D. Freeman, J. Mol. Struct., Vol. 739 (2005) p.57.

Google Scholar

[8] H. Lin, B.D. Freeman, J. Membr. Sci., Vol. 239 (2004) p.105.

Google Scholar

[9] K. Okamoto, M. Fuji, S. Okamyo, H. Suzuki, K. Tanaka, H. Kita, Macromolecules, Vol. 28 (1995) p.6950.

DOI: 10.1021/ma00124a035

Google Scholar

[10] Y. Hirayama, Y. Kase, N. Tanihara, Y. Sumiyama, Y. Kusuki, K. Haraya, J. Membr. Sci., Vol. 160 (1999) p.87.

Google Scholar

[11] W. Yave, A. Car, J. Wind, K.V. Peinemann, Nanotechnology, Vol. 21 (2010) p.5301.

Google Scholar

[12] H. Lin, E.V. Wagner, J.S. Swinnea, B.D. Freeman, S.J. Pas, A.J. Hill, S. Kalakkunnath, D.S. Kalika, J. Membr. Sci., Vol. 276 (2006) p.145.

DOI: 10.1016/j.memsci.2005.09.040

Google Scholar

[13] H. Lin, T. Kai, B.D. Freeman, S. Kalakkunnath, D.S. Kalika, Macromolecules, Vol. 38 (2005) p.8381.

Google Scholar

[14] N.P. Patel, A.C. Miller, R.J. Spontak, Adv. Mater., Vol. 15 (2003) p.729.

Google Scholar

[15] L. Liu, A. Chakma, X.S. Feng, J. Membr. Sci., Vol. 235 (2004) p.43.

Google Scholar

[16] Y. Song, P. Sun, L.L. Henry, B. Sun, , J. Membr. Sci., Vol. 251 (2005) p.67.

Google Scholar

[17] S. Li, Z. Wang, X. Yu, J. Wang, S. Wang, Adv. Mater., Vol. 24 (2012) p.3196.

Google Scholar

[18] F. Yuan, Z. Wang, S. Li, J. Wang, S. Wang, J. Membr. Sci., Vol. 421–422 (2012) p.327.

Google Scholar

[19] B.H. Jeong, E.M.V. Hoek, Y.S. Yan, A. Subramani, X.F. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, J. Membr. Sci., Vol. 294 (2007) p.1.

Google Scholar

[20] L. Liu, A. Chakma, X. Feng, Chem. Eng. J., Vol. 105 (2004) p.43.

Google Scholar

[21] X. He, M. -B. Hägg, J. Membr. Sci., Vol. 378 (2011) p.1.

Google Scholar

[22] C.M. Dong, Z. Wang, C.H. Yi, S.C. Wang, J. Appl. Poly. Sci., Vol. 101 (2006) p.1885.

Google Scholar

[23] W.X. Fang, L. Shi, R. Wang, J. Membr. Sci., 430 (2013) pp.129-139.

Google Scholar

[24] W. Fang, R. Wang, S. Chou, L. Setiawan, A.G. Fane, J. Membr. Sci., Vol. 394 (2012) p.140.

Google Scholar

[25] S.P. Sun, T.A. Hatton, S.Y. Chan, T.S. Chung, J. Membr. Sci., Vol. 401 (2012) p.152.

Google Scholar

[26] W.X. Fang, R. Wang, S.R. Chou, L. Setiawan, A.G. Fane: J. Membr. Sci., Vol. 394 (2012) p.140.

Google Scholar

[27] X.W. Yu, Z. Wang, Z.H. Wei, S.J. Yuan, J.A. Zhao, J.X. Wang, S.C. Wang, J. Membr. Sci., Vol. 362 (2010) p.265.

Google Scholar

[28] S.C. Li, Z. Wang, C.X. Zhang, M.M. Wang, F. Yuan, J.X. Wang, S.C. Wang, J. Membr. Sci., Vol. 436 (2013) p.121.

Google Scholar

[29] X. Ren, J. Ren, H. Li, S. Feng, M. Deng, Int. J. Greenh. Gas Con., Vol. 8 (2012) p.111.

Google Scholar

[30] W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.V. Peinemann, Macromolecules, Vol. 43 (2010) p326p.

Google Scholar

[31] H.Y. Zhao, Y.M. Cao, X.L. Ding, M.Q. Zhou, J.H. Liu, Q. Yuan, J. Membr. Sci., Vol. 320 (2008) p.179.

Google Scholar

[32] A. Car, C. Stropnik, W. Yave, K.V. Peinemann, J. Membr. Sci., Vol. 307 (2008) p.88.

Google Scholar