Boron Removal from Water Using Takovite: Adsorption vs. Anion Exchange

Article Preview

Abstract:

Takovite, a kind of hydrotalcite-like compounds (HTlcs), was used for boron removal from water. It was prepared by coprecipitation method and characterized by X-ray diffraction technique (XRD). The equilibrium time of boron sorption by takovite as well as its boron uptake capacities was determined by the reaction kinetic experiments and isotherm sorption experiments. The effects of experimental conditions on boron removal efficiency were also evaluated. Generally, the boron uptake by takovites increases with increasing initial boron concentration in solution. The isotherm sorption data match well with the Freundlich model, indicating that the anion exchange contributes a lot to solution deboronation. Moreover, at higher temperature, greater boron removal by takovite was observed. As compared to calcined takovite, uncalcined takovite has better performance in terms of boron uptake, since the structural restoration of calcined takovite didnt happen during its contact with boron-containing solution, which is quite different from the behavior of other HTlcs as reported.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

2150-2156

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Kabay, E. Guler, M. Bryjak, Desalination, 261 (2010) 212-17.

Google Scholar

[2] N. Nadav, Desalination, 124 (1999) 131-35.

Google Scholar

[3] A. Simsek, D. Korkmaz, Y.S. Velioglu, O.Y. Ataman, Food Chem, 83 (2003) 293-96.

Google Scholar

[4] N. Kabay, I. Yilmaz, S. Yamac, M. Yuksel, U. Yuksel, N. Yildirim, O. Aydogdu, T. Iwanaga, K. Hirowatari, Desalination, 167 (2004) 427-38.

DOI: 10.1016/j.desal.2004.06.158

Google Scholar

[5] J. Wolska, M. Bryjak, Desalination, (2013) 18-24.

Google Scholar

[6] F.J. Murray, Regul Toxicol Pharm, 22 (1995) 221-30.

Google Scholar

[7] A.J. Wyness, R.H. Parkman, C. Neal, Sci Total Environ, 314 (2003) 255-69.

Google Scholar

[8] L. Melnyk, V. Goncharuk, I. Butnyk, E. Tsapiuk, Desalination, 185 (2005) 147-57.

DOI: 10.1016/j.desal.2005.02.076

Google Scholar

[9] S. Barth, Water Res, 32 (1998) 685-90.

Google Scholar

[10] G.V. Morales, M.E. Capretto, L.M. Fuentes, O.D. Quiroga, Hydrometallurgy, 58 (2000) 127-33.

Google Scholar

[11] S. Sahin, Desalination, 143 (2002) 35-43.

Google Scholar

[12] A.N. Ay, B. Zumreoglu-Karan, A. Temel, Micropor Mesopor Mat, 98 (2007) 1-05.

Google Scholar

[13] N. Bicak, N. Bulutcu, B.F. Senkal, M. Gazi, React Funct Polym, 47 (2001) 175-84.

Google Scholar

[14] L.V. Rajakovic, M.D. Ristic, Carbon, 34 (1996) 769-74.

Google Scholar

[15] N. Kabay, I. Yilmaz, S. Yamac, S. Samatya, M. Yuksel, U. Yuksel, M. Arda, M. Saglam, T. Iwanaga, K. Hirowatari, React Funct Polym, 60 (2004) 163-70.

DOI: 10.1016/j.reactfunctpolym.2004.02.020

Google Scholar

[16] O.P. Ferreira, S.G. de Moraes, N. Duran, L. Cornejo, O.L. Alves, Chemosphere, 62 (2006) 80-88.

Google Scholar

[17] M. Jitianu, C.G. Darren, E.A. Doreen, Z. Maria, J. Andrei, Mater Res Bull, 48 (2013) 1864-73.

Google Scholar

[18] R.S.C.P. Mourad Intissar, J Solid State Chem, 167 (2002) 508-16.

Google Scholar

[19] W.T. Reichle, J Catal, 94 (1985) 547-57.

Google Scholar

[20] H.W. Olfs, L.O. Torres-Dorante, R. Eckelt, H. Kosslick, Appl Clay Sci, 43 (2009) 459-64.

Google Scholar

[21] A. Legrouri, M. Lakraimi, A. Barroug, A. De Roy, J.P. Besse, Water Res, 39 (2005) 3441-48.

DOI: 10.1016/j.watres.2005.03.036

Google Scholar

[22] Q.H. Guo, E.J. Reardon, Appl Clay Sci, 56 (2012) 7-15.

Google Scholar

[23] M. Del Arco, S. Gutierrez, C. Martin, V. Rives, J. Rocha, J Solid State Chem, 151 (2000) 272-80.

Google Scholar

[24] F. Bruna, R. Celis, I. Pavlovic, C. Barriga, J. Cornejo, M.A. Ulibarri, J Hazard Mater, 168 (2009) 1476-81.

Google Scholar

[25] V. Mas, M.L. Dieuzeide, M. Jobbagy, G. Baronetti, N. Amadeo, M. Laborde, Catal Today, 133 (2008) 319-23.

Google Scholar

[26] S. Abello, D. Verboekend, B. Bridier, J. Perez-Ramirez, J Catal, 259 (2008) 85-95.

Google Scholar

[27] F. Medina, R. Dutartre, D. Tichit, B. Coq, N.T. Dung, P. Salagre, J.E. Sueiras, J Mol Catal A-Chem, 119 (1997) 201-12.

DOI: 10.1016/s1381-1169(96)00484-0

Google Scholar

[28] J. Das, D. Das, G.P. Dash, K.M. Parida, J Colloid Interf Sci, 251 (2002) 26-32.

Google Scholar

[29] A.B. Beleke, M. Mizuhata, J Power Sources, 195 (2010) 7669-76.

Google Scholar

[30] S.B. Wang, Q. Ma, Z.H. Zhu, Fuel Process Technol, 90 (2009) 375-80.

Google Scholar

[31] G.M. Y. S. Ho, Process Biochem, 34 (1999) 451-65.

Google Scholar

[32] E. Ramos-Ramirez, N. Ortega, C. Soto, M. Gutierrez, J Hazard Mater, 172 (2009) 1527-31.

Google Scholar

[33] W. Ma, N.N. Zhao, G. Yang, L.Y. Tian, R. Wang, Desalination, 268 (2011) 20-26.

Google Scholar

[34] V. Rives, Mater Chem Phys, 75 (2002) 19-25.

Google Scholar