Estimation of Fracture Toughness of Fiber/Matrix Interface

Article Preview

Abstract:

To estimate the level of interfacial adhesion between the fiber and polymer-matrix in fiber/matrix composites, interfacial fracture toughness was derived based on an energy balance scheme. A break gap occurring at the initial interface debond during fragmentation test was taken into account. The external work and work done against friction slip at debonded interface were included in energy balance scheme. The interfacial fracture toughness obtained is a function of fiber and matrix material properties and critical debond strain which is the external strain applied on the specimen to initiate interfacial debonding. The break gap calculated increases with increasing applied load and decreasing friction coefficient. The proportion of each energy terms in energy balance equation was calculated. Comparison between the predicted interfacial fracture toughness and that numerical result was done.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

145-150

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Tamargo-Martínez, A. Martínez-Alonso, M.A. Montes-Morán, J.M.D. Tascón: Compos Sci Technol Vol. 71 (2011), p.784.

Google Scholar

[2] M.R. Piggott: Compos Sci Technol Vol. 30 (1987), p.295.

Google Scholar

[3] E. Pisanova, S. Zhandarov, E. Mäder, I. Ahmad, R.J. Young: Composites A Vol. 32 (2001), p.435.

Google Scholar

[4] L. Yang, J.L. Thomason: Composites A Vol. 41 (2010), p.1077.

Google Scholar

[5] Z. Liu, X.H. Yuan, A.J. Beck, F.R. Jones: Compos Sci Technol Vol. 71 (2011), p.1529.

Google Scholar

[6] J.M. Park, S.I. Lee, J.H. Cho: Compos Sci Technol Vol. 65 (2005), p.571.

Google Scholar

[7] B.W. Kim, J.A. Nairn: J Compos Mater Vol. 36 (2002), p.1825.

Google Scholar

[8] E. Graciani, V. Mantic, F. París, J. Varna: Compos Sci Technol Vol. 69 (2009), p.2514.

Google Scholar

[9] J. Varna, R. Joffe, A. Berglund: Compos Sci Technol Vol. 56 (1996), p.1105.

Google Scholar

[10] M. Nishikawa, T. Okabe, N. Takeda: Mater Sci Eng A Vol. 480 (2008), p.549.

Google Scholar

[11] H.D. Wagner, S. Ling: Adv Compos Lett Vol. 2 (1993), p.169.

Google Scholar

[12] R.B. Yallee, R.J. Young: Compos Sci Technol Vol. 58 (1998), p. (1907).

Google Scholar

[13] H.D. Wagner, J.A. Nairn, M. Detassis: Appl Compos Mater Vol. 2 (1995), p.107.

Google Scholar

[14] X.F. Zhou, J.A. Nairn, H.D. Wagner: Composites A Vol. 30 (1999), p.1387.

Google Scholar

[15] S. Kimura, J. Koyanagi, H. Kawada: JSME Int J Ser A Vol. 49(2006), p.451.

Google Scholar

[16] G.A. Holmes, R.C. Peterson, D.L. Hunston, W.G. McDonough: Polym Compos, Vol. 28 (2007), p.561.

Google Scholar

[17] A.C. Johnson, S.A. Hayes, F.R. Jones: Composites A, Vol. 36 (2005), p.263.

Google Scholar

[18] B. Harris, J. Morley, D.C. Phillips: J Mater Sci Vol. 10 (1975), p. (2050).

Google Scholar

[19] T. Lacroix, R. Keunings, M. Desaeger, I. Verpoest: J Mater Sci Vol. 30 (1995), p.683.

Google Scholar

[20] J.A. Nairn: Int J Fract Vol. 105 (2000), p.243.

Google Scholar

[21] M. Hejda, K. Kong, R.J. Young, S.J. Eichhorn: Compos Sci Technol Vol. 68 (2008), p.848.

Google Scholar

[22] T. Okabe, N. Takeda: Compos Sci Technol Vol. 61 (2001), p.1789.

Google Scholar

[23] F.A. Ramirez, L.A. Carlsson, B.A. Acha: Composites A Vol. 40 (2009), p.679.

Google Scholar