[1]
Bender H, Wallenfels K. Biochem. Z. Vol. 334 (1961), p.79.
Google Scholar
[2]
Yuen S. Pullulan and its applications. Process Biochem. Vol. 9 (1974), p.7–9.
Google Scholar
[3]
Mohammad FHA, Badr-Eldin SM, El-Tayeb OM, Abd El-Rahman OA Polysaccharide production by Aureobasidium pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass Bioenergy. Vol. 8 (1995), p.121–129.
DOI: 10.1016/0961-9534(95)00092-l
Google Scholar
[4]
Seo HP, Son CW, Chung CH, Jung DI, Kim SK, Richard AG, David LK, Lee JW. Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresour Technol. Vol. 95 (2004), p.293–299.
DOI: 10.1016/j.biortech.2003.02.001
Google Scholar
[5]
McNeil B & Kristiansen B. Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks. Enzyme and Microbial Technology. Vol. 12 (1990), p.521–526.
DOI: 10.1016/0141-0229(90)90069-3
Google Scholar
[6]
Vijayendra SVN, Bansal D, Prasad MS & Nand K Jaggery. A novel substrate for pullulan production by Aureobasidium pullulans CFR-77. Process Biochem. Vol. 37 (2001), p.359–364.
DOI: 10.1016/s0032-9592(01)00214-x
Google Scholar
[7]
Ono K, Yasuda N & Ueda S. Effect of pH on pullulan elaboration by Aureobasidium pullulans S. 1. Agricultural and Biological Chemistry. Vol. 44 (2011), p.2113–2118.
DOI: 10.1271/bbb1961.41.2113
Google Scholar
[8]
Gibbs PA, Seviour RJ. Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture. Appl. Microbiol. Biotechnol. Vol. 46 (1996), p.503–510.
DOI: 10.1007/s002530050851
Google Scholar
[9]
Reeslev M, Jensen B. Influence of Zn2+ and Fe3+ on polysaccharide production and mycelial/yeast dimorphism of Aureobasidium pullulans in batch cultivations. Appl. Microbiol. Biotechnol. Vol. 42 (1995) Vol. 910–915.
DOI: 10.1007/bf00191190
Google Scholar
[10]
Roukas T. Pullulan production from brewery wastes by Aureobasidium pullulans. World J Biotech. Vol. 15 (1999), p.447–450.
Google Scholar
[11]
Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika. Vol. 33 (1977), p.305–325.
DOI: 10.1093/biomet/33.4.305
Google Scholar
[12]
Box GEP, Wilson KB. On the experimental attainment of optimum conditions. J.R. Stat. Soc. (Ser B) Vol. 13 (1951), p.1–45.
Google Scholar
[13]
Wu SJ, Jin ZY & Tong QY. Sweet potato: A novel substrate for pullulan production by Aureobasidium pullulans. Carbohydr. Polym. Vol. 76 (2009), p.645–649.
DOI: 10.1016/j.carbpol.2008.11.034
Google Scholar
[14]
Montgomeryd DC. Design and analysis of experiments, 3rd ed. John wiley and sons. (1991).
Google Scholar
[15]
Oh S, Rheem S, Sim J, Kim S, Back Y. Optimizing conditions for the growth of Lactobacillus casein YIT9018 in tyrptone-yeast extract-glucose medium by using response surface methodology. Appl Environ Microbiol. Vol. 61 (1995), p.3809–3814.
DOI: 10.1128/aem.61.11.3809-3814.1995
Google Scholar
[16]
Wang YX, Lv FX, Lu ZX. Optimization of cultivation medium Clitocybe sp. AS5. 112 for the extracellular polysaccharide production and mycelial growth by response surface methodology. Journal of NanJing Agriculture University. Vol. 27 (2004).
Google Scholar
[17]
Cheng KC, Demirci A, Catchmark JM. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Appl. Microbiol. Biotechnol. Vol. 86 (2010), p.853–861.
DOI: 10.1007/s00253-009-2332-x
Google Scholar
[18]
Jiang LF. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulans using response surface methodology. Carbohydr. Polym. Vol. 79 (2010), p.414–417.
DOI: 10.1016/j.carbpol.2009.08.027
Google Scholar
[19]
Lacroix C, LeDuy A, Noel G, Choplin L. Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol. Bioeng. Vol. 27 (1985), p.202–207.
DOI: 10.1002/bit.260270216
Google Scholar
[20]
Singh RS, Saini GK & Kennedy JF. Pullulan: Microbial sources, production and applications. Carbohydr. Polym. Vol. 73 (2008), p.515–531.
DOI: 10.1016/j.carbpol.2008.01.003
Google Scholar