Investigation of the Interference of Carbon Nanomaterials with SYBR Green I-Based Real-Time PCR

Article Preview

Abstract:

Some carbon nanomaterials have been proved to be able to improve the PCR amplification efficiency. If used in quantitative real-time PCR (qPCR), these nanomaterials must be tested whether fluorescence processing is interfered after they are added in the PCR system. In this study, 76 different carbon nanomaterials were tested in SYBR Green I-based qPCR, and the results demonstrated that about half carbon nanomaterials tested in this study could alter the PCR amplification profile probably due to the fluorescence quenching. Surprisingly, lower concentrations of nanomaterials led to more slight interference with the melting temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 785-786)

Pages:

550-555

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Whatmore RW. Nanotechnology-what is it? Should we be worried? Occup. Med. Vol. 56 (2006), pp.295-299.

DOI: 10.1093/occmed/kql050

Google Scholar

[2] McNeil SE. Nanotechnology for the biologist. J Leukoc Biol. Vol. 78 (2005), pp.585-594.

Google Scholar

[3] Li H, Huang J, Lv J, An H, Zhang X, Zhang Z, Fan C and Hu J. Nanoparticle PCR: Nanogold-Assisted PCR with Enhanced Specificity. Angew. Chem. Int. Edn. Vol. 44 (2005), pp.5100-5103.

DOI: 10.1002/anie.200500403

Google Scholar

[4] Li JM, Zhao MX, Su H, Wang YY, Tan CP, Ji LN, Mao ZW. Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials Vol. 32 (2011), pp.7978-7987.

DOI: 10.1016/j.biomaterials.2011.07.011

Google Scholar

[5] Romoser AA, Chen PL, Berg JM, Seabury C, Ivanov I, Criscitiello MF, Sayes C.M. Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells. Mol Immunol. Vol. 48 (2011), pp.1349-1359.

DOI: 10.1016/j.molimm.2011.02.009

Google Scholar

[6] Pan J, Li H, Cao X, Huang J, Zhang X, Fan C and Hu J. Nanogold-assisted multi-round polymerase chain reaction (PCR).J. Nanosci. Nanotechnol. Vol. 7 (2007), pp.4428-4433.

DOI: 10.1166/jnn.2007.887

Google Scholar

[7] Li M, Lin YC, Wu CC, Liu HS. Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res. Vol. 33 (2005), p. e184.

DOI: 10.1093/nar/gni183

Google Scholar

[8] Cui DX, Tian FR, Kong Y, Titushikin I, Gao HJ. Effects of Single-walled Carbon Nanotubes on the Polymerase Chain Reaction. Nanotechnology Vol. 15(2004), pp.154-157.

DOI: 10.1088/0957-4484/15/1/030

Google Scholar

[9] Zhang Z Z, Wang M C, An H J. An aqueous suspension of carbon nanopowder enhances the efficiency of a polymerase chain reaction. Nanotechnology Vol. 18 (2007), pp.355-706.

DOI: 10.1088/0957-4484/18/35/355706

Google Scholar

[10] Zhang Z, Shen C, Wang M, Han H, Cao X. Aqueous suspension of carbon nanotubes enhances the specificity of long PCR. Biotechniques Vol. 44 (2008), pp.537-538, 540, 542.

DOI: 10.2144/000112692

Google Scholar

[11] Cao XY, Chen J, Wen SH , Peng C, Shen MW and Shi XY. Effect of surface charge of polyethyleneimine-modified multiwalled carbon nanotubes on the improvement of polymerase chain reaction. Nanoscale Vol. 3 (2011), pp.1741-1747.

DOI: 10.1039/c0nr00833h

Google Scholar

[12] Cui Z, Wang Y, Fang L, Zheng R, Huang X, Liu X, Zhang G, Rui D, Ju J, Hu Z. Novel real-time simultaneous amplification and testing method to accurately and rapidly detect Mycobacterium tuberculosis complex. J Clin Microbiol. Vol. 50 (2012).

DOI: 10.1128/jcm.05853-11

Google Scholar

[13] Carey CM, Kirk JL, Ojha S, Kostrzynska M. Current and future uses of real-time polymerase chain reaction and microarrays in the study of intestinal microbiota, and probiotic use and effectiveness. Can J Microbiol. Vol. 53 (2007), pp.537-550.

DOI: 10.1139/w07-039

Google Scholar

[14] Huang SH, Yang TC, Tsai MH, Tsai IS, Lu HC, Chuang PH, Wan L, Lin YJ, Lai CH, Lin CW. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus. Nanotechnology Vol. 1 (2008), p.405101.

DOI: 10.1088/0957-4484/19/40/405101

Google Scholar

[15] Patil N, Abba M, Hödl P, Schwarzbach M, Allgayer H. A real time PCR based approach for the quantitative detection of FUS-CHOP fusion transcripts in human liposarcoma. Adv Med Sci. Vol. 26 (2012), pp.1-9.

DOI: 10.2478/v10039-012-0018-6

Google Scholar

[16] Mendoza G, Portillo A, Olmos-Soto J. Accurate breast cancer diagnosis through real-time PCR her-2 gene quantification using immunohistochemically-identified biopsies. Oncol Lett. Vol. 5 (2013), pp.295-298.

DOI: 10.3892/ol.2012.984

Google Scholar

[17] Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5'--3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA. Vol. 88 (1991), pp.7276-7280.

DOI: 10.1073/pnas.88.16.7276

Google Scholar

[18] Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. Vol. 14 (1996), pp.303-308.

DOI: 10.1038/nbt0396-303

Google Scholar

[19] Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques Vol. 24 (1998), pp.954-8, 960, 962.

Google Scholar

[20] Wang W, Chen K, Xu C. DNA quantification using EvaGreen and a real-time PCR instrument. Anal Biochem. Vol. 356 (2006), pp.303-305.

DOI: 10.1016/j.ab.2006.05.027

Google Scholar

[21] Robinson BS, Monis PT, Dobson PJ. Rapid, sensitive, and discriminating identification of Naegleria spp. by real-time PCR and melting-curve analysis. Appl Environ Microbiol. Vol. 72(9) (2006), pp.5857-63.

DOI: 10.1128/aem.00113-06

Google Scholar