[1]
Tokaji K, OwaT, Hwang J U. Corrosion fatigue behavior of steel with sprayed coatings. Journal of Thermal Spray Technology. 269-273 (1996), 5.
DOI: 10.1007/bf02645877
Google Scholar
[2]
ZHANG Jingde,YIN Yansheng,ZHANG Hong,LI Jing,Researched on the Properties of Fe3Al-Al2O3 graded coatings. Journal of Materials Engineering. 14-16 (2003), 48.
Google Scholar
[3]
Rajeev Dhiman, André G. McDonald, Sanjeev Chandra. Predicting splat morphology in a thermal spray process. Surface & Coatings Technology [J]. 7789-7801 (2007), 201.
DOI: 10.1016/j.surfcoat.2007.03.010
Google Scholar
[4]
D. Kaewsai, A. Watcharapasorn, P. Singjai, etc. Thermal sprayed stainless steel/carbon nanotubes composite coatings. Surface & Coatings Technology. 2104-2112 (2010), 205.
DOI: 10.1016/j.surfcoat.2010.08.113
Google Scholar
[5]
Anup Kumar Keshri, Debrupa Lahiri, Arvind Agarwal. Carbon nanotubes improve the adhesion strength of a ceramic splat to the steel substrate. Carbon. 4340-4347 (2011), 49.
DOI: 10.1016/j.carbon.2011.06.010
Google Scholar
[6]
IIJIMAS. Helical microtubles of graphitic carbon. Nature. 354-356 (1991), 354.
Google Scholar
[7]
Z Xia, L Riester, W. A Curtin, et al. Direct observation of toughening mechanism in carbon nanotube ceramic matrix composite. Acta Materialia [J]. 931-943 (2004), 54.
DOI: 10.1016/j.actamat.2003.10.050
Google Scholar
[8]
Nyan-Hwa Tai, Meng-Kao Yeh, Jia-Hau. Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement. Carbon. 2774-2777 (2004), 42.
DOI: 10.1016/j.carbon.2004.06.002
Google Scholar
[9]
Anup Kumar Keshri, Kantesh Balani, Srinivasa R. Bakshi, Virendra Singh, Tapas Laha, Sudipta Seal, Arvind Agarwal. Structural transformations in carbon nanotubes during thermal spray processing. Surface & Coatings Technology. 2193-2201 (2009), 203.
DOI: 10.1016/j.surfcoat.2009.02.013
Google Scholar
[10]
Ahmad, A. Kennedy, Y.Q. Zhu. Wear resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear. 71-78 (2010), 269.
DOI: 10.1016/j.wear.2010.03.009
Google Scholar
[11]
K. Balani, A. Agarwal. Process map for plasma sprayed aluminum oxide-carbon nanotube nanocomposite coatings. Surface & Coatings Technology. 4270-4277 (2008), 202.
DOI: 10.1016/j.surfcoat.2008.03.024
Google Scholar
[12]
Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 1-4 (2001), 87.
DOI: 10.1103/physrevlett.87.215502
Google Scholar
[13]
BAUGHMANRH, ZAKHIDOVA A, HEERWA. Carbon Nanotubes the route toward applications. Science. 787-792 (2002), 297.
Google Scholar
[14]
K. Ramachandran, V. Selvarajan, P.V. Ananthapadmanabhan. Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina–titania coatings. Thin Solid Films. 144-152 (1998).
DOI: 10.1016/s0040-6090(97)00738-4
Google Scholar
[15]
Anup K. Keshri, Jun Huang, Virendra Singh, etc. Synthesis of aluminum oxide coating with carbon nanotube reinforcement produced by chemical vapor deposition for improved fracture and wear resistance. CARBON. 431-442 (2010), 48.
DOI: 10.1016/j.carbon.2009.08.046
Google Scholar
[16]
W.X. Chen, J.P. Tu, L.Y. Wang, etc. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon. 215-222 (2003), 41.
DOI: 10.1016/s0008-6223(02)00265-8
Google Scholar
[17]
Il-Young Kima, Jung-Hee Leea, Gyu-Sun Leea, etc. Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions. Wear. 593-598 (2009), 267.
DOI: 10.1016/j.wear.2008.12.096
Google Scholar
[18]
W.X. Chen, J.P. Tu, H.Y. Gan, etc. Electroless preparation and tribological properties of Ni-P-Carbon nanotube composite coatings under lubricated condition. Surface and Coatings Technology. 68-73 (2002), 160.
DOI: 10.1016/s0257-8972(02)00408-5
Google Scholar