Effects of Variations in Annealing Temperature and Annealing Time on the Spectral and Solid State Properties of Nickel Oxide (NiO) Thin Films

Article Preview

Abstract:

Chemical bath deposited nickel oxide (NiO) thin film samples were grown at room temperature of 30 °C on glass substrates. Samples k1, k2, and k3 were annealed for one hour at temperatures of 100 °C, 200 °C and 300 °C respectively, while as grown sample k4 served as a reference. A second set of samples k5, k7, and k8 were annealed at a constant temperature of 300 °C for time durations of 1H, 2H and 3H respectively, with as grown sample k6 as a reference. The spectral absorbance, transmittance and reflectance of all the thermally treated thin film samples were measured with a spectrophotmeter (D model Avantes Spec 2048 version 7.0) in the UV-VIS-NIR region of 300-900 nm wavelength. The results show distinctive variations in all the spectral properties for different combinations of annealing time and temperature, each starting at a threshold wavelength of 300 nm and ending with a distinctive minimum or maximum value. Deduced graphical values of the refractive index also show distinctive variations. For annealing time of 3 hours at a temperature of 300 °C, the results produced symmetric reflectance and symmetric refractive index with maximum values of 8% and 0.293 occurring at 500 nm wavelength and photon energy of 2.5 eV respectively. Direct transition band gap energy obtained for all the samples lie between 3.68-3.84 eV. The results reported in this paper clearly indicate that optimum combinations of production parameters of nickel oxide thin films can yield specific values of the properties for specific applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-268

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Chen, Y. Lu and W. Hwang. Surface and Coatings Technology 198 (2005) 138.

Google Scholar

[2] A. Tomozawa, F. Fujii, H. Torii, and R. Takayama. Jpn. J. App. Phys. 35, 1328 (1996).

Google Scholar

[3] A. Fuchs, M. Bogner. K. Schamgel, R. Winter, T. Delland and I. Eisele. Sens. Actuators. B Chem. 47, 145 (1998).

Google Scholar

[4] T. Miki, K. Yoshimura and S. Tanemura. Jpn J. Appl. Phys. 34, 2440 (1995).

Google Scholar

[5] T. Minami, H. Sato, S. Takata and T. Yamada. Thin Solid Films c5, 27 (1993).

Google Scholar

[6] S. Deivanayaki, P. Jayamurugan, R. Mariappan and V. Ponnuswamy. Chalcogenide Letters 7(3): 159-163 (2010).

Google Scholar

[7] R. Alessandro. Ph. D Dissertation, Swiss Federal Institute of Technolody, Zurich (2002).

Google Scholar

[8] A. U. Ubale, R.J. Dhokne, P. S. Chikhlikar, V.S. Sangawar, and D. K. Kulkarni. Bull. Mater Sci. 29(2): 185-188 (2006).

Google Scholar

[9] D. K. Kulkarni, Bull. Mater Sci. 29(2): 165-168 (2006).

Google Scholar

[10] H. R. Moutinho, F. S. Hsoon, F. Abulfotuh and L. L. Kazmerski. J. of Vacuum Sci. Technology. (6): 2877-2883 (1995).

Google Scholar

[11] P. Bhattacharya and D. N. Bose. Semiconductor Science and Technology 6(5) (1991).

Google Scholar

[12] B. Habibe and E. Cigdem. Journal of Physics 22: 441-451 (1998).

Google Scholar

[13] F. O. Sukarno, F. L. Fabio, E. F. J. E. O. Ttiana, M. Motsuke and A. Eduardo. Brazilian Journal of Phys. 36(2A) (2006).

Google Scholar

[14] K. R. Murale and B. Jayasutha. Merial Sci. in Semiconductors Processing 10(1): 36-40 (2007).

Google Scholar

[15] V. M. Nikale, S. S. Shinde, C. H. Bhosale and K. Y. Rajpure. J. of Semiconductors 32(3) (2011).

Google Scholar

[16] V. V. Ison, A.R. Rao and V. Dutta. Solid State Sciences 11(11): 2003-2007 (2009).

Google Scholar

[17] K. Vipin, J. K. Gaur, M. K. Sharma and T. P. Sharma. Chalcogenide Letters 5(8): 171-176 (2008).

Google Scholar

[18] J. C. Osuwa, C. I. Oriaku, F. I. Ezema, Chalcogenide Letters 6(8): 385-391 (2009).

Google Scholar