Dynamical Behaviors of Stochastic Reaction-Diffusion Hopfield Neural Networks

Article Preview

Abstract:

Dynamical behaviors of stochastic reaction-diffusion Hopfield neural networks with delays are investigated. By employing Lyapunov method, Hardy-Poincare inequality and linear matrix inequality, some novel criteria on ultimate boundedness and asymptotic stability are obtained. The sufficient criteria depend on the diffusion effects and are independent of the magnitude of the delays. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

921-925

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.J. Hopfield: Proceedings of the National Academy of Sciences, USA 79 (1982), 2554.

Google Scholar

[2] J.J. Hopfield: Proceedings of the National Academy of Sciences, USA 81 (1984), 3088.

Google Scholar

[3] L. Liang and J. Cao: Phys. Lett. A 314 (2003), 434.

Google Scholar

[4] K. Li and Q. Song: Neurocomputing 72 (2008) , 231.

Google Scholar

[5] R.C. Wu and W. Zhang: Expert Syst. Appl. 36 (2009), 9834.

Google Scholar

[6] X. H. Zhang, S. L. Wu and K. L. Li: Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 1524.

Google Scholar

[7] Y. F. Wang, P. Lin and L. S. Wang: Nonlinear Anal-Real. 13 (2012), 1353.

Google Scholar

[8] P. Balasubramaniam and C. Vidhya : Expert Syst. Appl. 39 (2012) , 3109.

Google Scholar

[9] X. Li and J. Cao : Nonlinear Dyn 50 (2007), 363.

Google Scholar

[10] C. Huang and J. Cao: Neurocomputing 72 (2009), 3352.

Google Scholar

[11] H.Y. Zhao, N. Ding and L. Chen: Chaos Soliton. Fract. 40 (2009) , 1653.

Google Scholar

[12] C. Huang and J.D. Cao: Neurocomputing 73 (2010), 986.

Google Scholar

[13] X.D. Li: Neurocomputing 73 (2010), 7498.

Google Scholar

[14] Q. Zhu and J. Cao: IEEE Trans. Syst. Man Cybern. B 41 (2011), 341.

Google Scholar

[15] C.H. Wang, Y.G. Kao and G.W. Yang: Neurocomputing 89 (2012), 55.

Google Scholar

[16] Z. Li and R. Xu: Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 1681.

Google Scholar

[17] X. Lou and B. Cui: Chaos Soliton. Fract. 33 (2007), 653.

Google Scholar

[18] Y. Xu and B. Cui: Chaos Soliton. Fract. 36 (2008) , 469.

Google Scholar

[19] Q. Song and Z. Zhao: Chaos Soliton. Fract. 25 (2005) , 393.

Google Scholar

[20] H. Jiang and Z. Teng: Neural Networks 17 (2004), 1415.

Google Scholar

[21] H. Jiang and Z. Teng: Neural Networks 72 (2009), 2455.

Google Scholar

[22] L. Wan and Q.H. Zhou: Nonlinear Anal-Real 12 (2011), 2561.

Google Scholar

[23] R. Temam: Infinite Dimensional Dynamical Systems in Mechanics and Physics (Springer, NewYork, 1998).

Google Scholar

[24] J. Pan and S. M. Zhong: Neurocomputing 73 (2010), 134.

Google Scholar