Influences of Biochar Aging Processes by Eco-Environmental Conditions

Article Preview

Abstract:

Biochar is receiving increasing attention as a promising functional material in contaminated soil remediation. However, aging processes of biochar can usually take place and affect its remediation function, because surface properties of biochar are expected to change through a variety of biotic and abiotic processes. In this review, some important influencing factors of biochar aging processes were discussed, including temperature, and soil-physical, soil-chemical and soil-biological components. It pointed out that biochar aging processes may be promoted by high temperature, protected by soil components, particularly soil organic matter (SOM), and interactions with soil microorganisms. To further prolong application of biochar in nature, biochar aging can be mitigated by its influencing factors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

467-470

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. A. Spokas: Carbon Management Vol. 1 (2010), p.289.

Google Scholar

[2] X. Cao and W. Harris: Bioresource Technology Vol. 101 (2010), p.5222.

Google Scholar

[3] C. Steiner, W. Teixeira, J. Lehmann, T. Nehls, J. de Macêdo, W. Blum, and W. Zech: Plant and Soil Vol. 291 (2007), p.275.

DOI: 10.1007/s11104-007-9193-9

Google Scholar

[4] K. Y. Chan, L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph: Soil Research Vol. 45 (2007), p.629.

DOI: 10.1071/sr07109

Google Scholar

[5] E. Marris: Nature Vol. 442 (2006), p.624.

Google Scholar

[6] B. Glaser: Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 362 (2007), p.187.

Google Scholar

[7] K. Gell, J. van Groenigen, and M. L. Cayuela: Journal of Hazardous materials Vol. 186 (2011), p. (2017).

Google Scholar

[8] B. Glaser, M. Parr, C. Braun, and G. Kopolo: Nature Geosci Vol. 2 (2009), p.2.

Google Scholar

[9] X. Cao, L. Ma, Y. Liang, B. Gao, and W. Harris: Environmental Science & Technology Vol. 45 (2011), p.4884.

Google Scholar

[10] D. L. Jones, G. Edwards-Jones, and D. V. Murphy: Soil Biology and Biochemistry Vol. 43 (2011), p.804.

Google Scholar

[11] N. Singh and R. Kookana: Journal of Environmental Science and Health, Part B Vol. 44 (2009), p.214.

Google Scholar

[12] Y. Mason, A. A. Ammann, A. Ulrich, and L. Sigg: Environmental Science & Technology Vol. 33 (1999), p.1588.

Google Scholar

[13] M. Uchimiya, I. M. Lima, K. Thomas Klasson, S. Chang, L. H. Wartelle, and J. E. Rodgers: Journal of Agricultural and Food Chemistry Vol. 58 (2010), p.5538.

Google Scholar

[14] R. S. Swift: Soil Science Vol. 166 (2001), p.858.

Google Scholar

[15] R. S. Kookana, A. K. Sarmah, L. Van Zwieten, E. Krull, and B. Singh, Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences, in Advances in Agronomy, L.S. Donald, Editor. 2011, Academic Press. p.103.

DOI: 10.1016/b978-0-12-385538-1.00003-2

Google Scholar

[16] C. -H. Cheng, J. Lehmann, J. E. Thies, S. D. Burton, and M. H. Engelhard: Organic Geochemistry Vol. 37 (2006), p.1477.

Google Scholar

[17] C. -H. Cheng and J. Lehmann: Chemosphere Vol. 75 (2009), p.1021.

Google Scholar

[18] B. T. Nguyen and J. Lehmann: Organic Geochemistry Vol. 40 (2009), p.846.

Google Scholar

[19] C. -H. Cheng, J. Lehmann, and M. H. Engelhard: Geochimica et Cosmochimica Acta Vol. 72 (2008), p.1598.

Google Scholar

[20] B. Liang, J. Lehmann, D. Solomon, S. Sohi, J. E. Thies, J. O. Skjemstad, F. J. Luizão, M. H. Engelhard, E. G. Neves, and S. Wirick: Geochimica et Cosmochimica Acta Vol. 72 (2008), p.6069.

DOI: 10.1016/j.gca.2008.09.028

Google Scholar

[21] S. D. Joseph, M. Camps-Arbestain, Y. Lin, P. Munroe, C. H. Chia, J. Hook, L. van Zwieten, S. Kimber, A. Cowie, B. P. Singh, J. Lehmann, N. Foidl, R. J. Smernik, and J. E. Amonette: Soil Research Vol. 48 (2010), p.501.

DOI: 10.1071/sr10009

Google Scholar

[22] B. Nguyen, J. Lehmann, J. Kinyangi, R. Smernik, S. Riha, and M. Engelhard: Biogeochemistry Vol. 89 (2008), p.295.

DOI: 10.1007/s10533-008-9220-9

Google Scholar

[23] B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'Neill, J. O. Skjemstad, J. Thies, F. J. Luizão, J. Petersen, and E. G. Neves: Soil Science Society of America Journal Vol. 70 (2006), p.1719.

DOI: 10.2136/sssaj2005.0383

Google Scholar

[24] B. Glaser, E. Balashov, L. Haumaier, G. Guggenberger, and W. Zech: Organic Geochemistry Vol. 31 (2000), p.669.

DOI: 10.1016/s0146-6380(00)00044-9

Google Scholar

[25] S. Brodowski, B. John, H. Flessa, and W. Amelung: European Journal of Soil Science Vol. 57 (2006), p.539.

Google Scholar

[26] A. Keith, B. Singh, and B. P. Singh: Environmental Science & Technology Vol. 45 (2011), p.9611.

Google Scholar

[27] U. Hamer, B. Marschner, S. Brodowski, and W. Amelung: Organic Geochemistry Vol. 35 (2004), p.823.

DOI: 10.1016/j.orggeochem.2004.03.003

Google Scholar

[28] D. A. Wardle, M. -C. Nilsson, and O. Zackrisson: Science Vol. 320 (2008), p.629.

Google Scholar

[29] E. D. Goldberg, Black carbon in the environment : properties and distribution / Edward D. Goldberg. Environmental Science and Technology. 1985, New York : J. Wiley.

Google Scholar

[30] C. D. Scott, G. W. Strandberg, and S. N. Lewis: Biotechnology Progress Vol. 2 (1986), p.131.

Google Scholar

[31] E. A. Shneour: Science Vol. 151 (1966), p.991.

Google Scholar

[32] A. Zimmerman: Environmental Science & Technology Vol. 44 (2010), p.1295.

Google Scholar

[33] S. E. Kolb, K. J. Fermanich, and M. E. Dornbush: Soil Science Society of America Journal Vol. 73 (2009), p.1173.

Google Scholar

[34] K. M. Bushnaf, S. Puricelli, S. Saponaro, and D. Werner: Journal of Contaminant Hydrology Vol. 126 (2011), p.208.

DOI: 10.1016/j.jconhyd.2011.08.008

Google Scholar